fix(curriculum): clean-up Project Euler 301-320 (#42926)
* fix: clean-up Project Euler 301-320 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
This commit is contained in:
@ -8,44 +8,37 @@ dashedName: problem-318-2011-nines
|
||||
|
||||
# --description--
|
||||
|
||||
Consider the real number √2+√3.
|
||||
Consider the real number $\sqrt{2} + \sqrt{3}$.
|
||||
|
||||
When we calculate the even powers of √2+√3
|
||||
When we calculate the even powers of $\sqrt{2} + \sqrt{3}$ we get:
|
||||
|
||||
we get:
|
||||
$$\begin{align}
|
||||
& {(\sqrt{2} + \sqrt{3})}^2 = 9.898979485566356\ldots \\\\
|
||||
& {(\sqrt{2} + \sqrt{3})}^4 = 97.98979485566356\ldots \\\\
|
||||
& {(\sqrt{2} + \sqrt{3})}^6 = 969.998969071069263\ldots \\\\
|
||||
& {(\sqrt{2} + \sqrt{3})}^8 = 9601.99989585502907\ldots \\\\
|
||||
& {(\sqrt{2} + \sqrt{3})}^{10} = 95049.999989479221\ldots \\\\
|
||||
& {(\sqrt{2} + \sqrt{3})}^{12} = 940897.9999989371855\ldots \\\\
|
||||
& {(\sqrt{2} + \sqrt{3})}^{14} = 9313929.99999989263\ldots \\\\
|
||||
& {(\sqrt{2} + \sqrt{3})}^{16} = 92198401.99999998915\ldots \\\\
|
||||
\end{align}$$
|
||||
|
||||
(√2+√3)2 = 9.898979485566356...
|
||||
It looks like that the number of consecutive nines at the beginning of the fractional part of these powers is non-decreasing. In fact it can be proven that the fractional part of ${(\sqrt{2} + \sqrt{3})}^{2n}$ approaches 1 for large $n$.
|
||||
|
||||
(√2+√3)4 = 97.98979485566356...
|
||||
Consider all real numbers of the form $\sqrt{p} + \sqrt{q}$ with $p$ and $q$ positive integers and $p < q$, such that the fractional part of ${(\sqrt{p} + \sqrt{q})}^{2n}$ approaches 1 for large $n$.
|
||||
|
||||
(√2+√3)6 = 969.998969071069263...
|
||||
Let $C(p,q,n)$ be the number of consecutive nines at the beginning of the fractional part of ${(\sqrt{p} + \sqrt{q})}^{2n}$.
|
||||
|
||||
(√2+√3)8 = 9601.99989585502907...
|
||||
Let $N(p,q)$ be the minimal value of $n$ such that $C(p,q,n) ≥ 2011$.
|
||||
|
||||
(√2+√3)10 = 95049.999989479221...
|
||||
|
||||
(√2+√3)12 = 940897.9999989371855...
|
||||
|
||||
(√2+√3)14 = 9313929.99999989263...
|
||||
|
||||
(√2+√3)16 = 92198401.99999998915...
|
||||
|
||||
It looks like that the number of consecutive nines at the beginning of the fractional part of these powers is non-decreasing. In fact it can be proven that the fractional part of (√2+√3)2n approaches 1 for large n.
|
||||
|
||||
Consider all real numbers of the form √p+√q with p and q positive integers and p<q, such that the fractional part of (√p+√q)2n approaches 1 for large n.
|
||||
|
||||
Let C(p,q,n) be the number of consecutive nines at the beginning of the fractional part of (√p+√q)2n.
|
||||
|
||||
Let N(p,q) be the minimal value of n such that C(p,q,n) ≥ 2011.
|
||||
|
||||
Find ∑N(p,q) for p+q ≤ 2011.
|
||||
Find $\sum N(p,q)$ for $p + q ≤ 2011$.
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler318()` should return 709313889.
|
||||
`twoThousandElevenNines()` should return `709313889`.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler318(), 709313889);
|
||||
assert.strictEqual(twoThousandElevenNines(), 709313889);
|
||||
```
|
||||
|
||||
# --seed--
|
||||
@ -53,12 +46,12 @@ assert.strictEqual(euler318(), 709313889);
|
||||
## --seed-contents--
|
||||
|
||||
```js
|
||||
function euler318() {
|
||||
function twoThousandElevenNines() {
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
euler318();
|
||||
twoThousandElevenNines();
|
||||
```
|
||||
|
||||
# --solutions--
|
||||
|
Reference in New Issue
Block a user