feat(curriculum): add python multiple choice questions (#38890)
This commit is contained in:
committed by
GitHub
parent
18d2dca05b
commit
3567813c51
@ -15,7 +15,8 @@ videoId: mHjxzFS5_Z0
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: 'When using Matplotlib''s global API, what does the order of numbers mean here <pre>plt.subplot(1, 2, 1)</pre>'
|
||||
text: |
|
||||
When using Matplotlib's global API, what does the order of numbers mean here?: `plt.subplot(1, 2, 1)`
|
||||
answers:
|
||||
- 'My figure will have one column, two rows, and I am going to start drawing in the first (left) plot.'
|
||||
- 'I am going to start drawing in the first (left) plot, my figure will have two rows, and my figure will have one column.'
|
||||
|
@ -15,7 +15,8 @@ videoId: kj7QqjXhH6A
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: 'The Python method <code>.duplicated()</code> returns a boolean Series for your DataFrame. <code>True</code> is the return value for rows that:'
|
||||
text: |
|
||||
The Python method `.duplicated()` returns a boolean Series for your DataFrame. `True` is the return value for rows that:
|
||||
answers:
|
||||
- contain a duplicate, where the value for the row contains the first occurrence of that value.
|
||||
- contain a duplicate, where the value for the row is at least the second occurrence of that value.
|
||||
|
@ -15,12 +15,39 @@ videoId: ovYNhnltVxY
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: Question
|
||||
text: |
|
||||
What will the following code print out?:
|
||||
|
||||
```py
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
s = pd.Series(['a', 3, np.nan, 1, np.nan])
|
||||
|
||||
print(s.notnull().sum())
|
||||
```
|
||||
|
||||
answers:
|
||||
- one
|
||||
- two
|
||||
- three
|
||||
solution: 3
|
||||
- '3'
|
||||
- |
|
||||
```
|
||||
0 True
|
||||
1 True
|
||||
2 False
|
||||
3 True
|
||||
4 False
|
||||
dtype: bool
|
||||
```
|
||||
- |
|
||||
```
|
||||
0 False
|
||||
1 False
|
||||
2 True
|
||||
3 False
|
||||
4 True
|
||||
dtype: bool
|
||||
```
|
||||
solution: 1
|
||||
```
|
||||
|
||||
</section>
|
||||
|
@ -15,12 +15,48 @@ videoId: sTMN_pdI6S0
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: Question
|
||||
text: |
|
||||
What will the following code print out?:
|
||||
|
||||
```py
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
s = pd.Series([np.nan, 1, 2, np.nan, 3])
|
||||
s = s.fillna(method='ffill')
|
||||
|
||||
print(s)
|
||||
```
|
||||
|
||||
answers:
|
||||
- one
|
||||
- two
|
||||
- three
|
||||
solution: 3
|
||||
- |
|
||||
```
|
||||
0 1.0
|
||||
1 1.0
|
||||
2 2.0
|
||||
3 3.0
|
||||
4 3.0
|
||||
dtype: float64
|
||||
```
|
||||
- |
|
||||
```
|
||||
0 NaN
|
||||
1 1.0
|
||||
2 2.0
|
||||
3 2.0
|
||||
4 3.0
|
||||
dtype: float64
|
||||
```
|
||||
- |
|
||||
```
|
||||
0 NaN
|
||||
1 1.0
|
||||
2 2.0
|
||||
3 NaN
|
||||
4 3.0
|
||||
dtype: float64
|
||||
```
|
||||
solution: 2
|
||||
```
|
||||
|
||||
</section>
|
||||
|
@ -15,11 +15,11 @@ videoId: h8caJq2Bb9w
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: Question
|
||||
text: What is *not* allowed in a Jupyter Notebook's cell?
|
||||
answers:
|
||||
- one
|
||||
- two
|
||||
- three
|
||||
- "Markdown"
|
||||
- "Python code"
|
||||
- "An Excel sheet"
|
||||
solution: 3
|
||||
```
|
||||
|
||||
|
@ -15,12 +15,13 @@ videoId: VJrP2FUzKP0
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: Question
|
||||
text: "Why should you choose R over Python for data analysis?"
|
||||
answers:
|
||||
- one
|
||||
- two
|
||||
- three
|
||||
solution: 3
|
||||
- "It's simple to learn."
|
||||
- "It's better at dealing with advanced statistical methods."
|
||||
- "There are many powerful libraries that support R."
|
||||
- "It's free and open source."
|
||||
solution: 2
|
||||
```
|
||||
|
||||
</section>
|
||||
|
@ -15,12 +15,14 @@ videoId: k1msxD3JIxE
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: Question
|
||||
text: "What kind of data can you import and work with in a Jupyter Notebook?"
|
||||
answers:
|
||||
- one
|
||||
- two
|
||||
- three
|
||||
solution: 3
|
||||
- "Excel files."
|
||||
- "CSV files."
|
||||
- "XML files."
|
||||
- "Data from an API."
|
||||
- "All of the above."
|
||||
solution: 5
|
||||
```
|
||||
|
||||
</section>
|
||||
|
@ -15,11 +15,33 @@ videoId: VDYVFHBL1AM
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: Question
|
||||
text: |
|
||||
What will the following code print out?:
|
||||
|
||||
```py
|
||||
A = np.array([
|
||||
['a', 'b', 'c'],
|
||||
['d', 'e', 'f'],
|
||||
['g', 'h', 'i']
|
||||
])
|
||||
|
||||
print(A[:, :2])
|
||||
```
|
||||
|
||||
answers:
|
||||
- one
|
||||
- two
|
||||
- three
|
||||
- "[['a' 'b']]"
|
||||
- |
|
||||
```
|
||||
[['b' 'c']
|
||||
['e' 'f']
|
||||
['h' 'i']]
|
||||
```
|
||||
- |
|
||||
```
|
||||
[['a' 'b']
|
||||
['d' 'e']
|
||||
['g' 'h']]
|
||||
```
|
||||
solution: 3
|
||||
```
|
||||
|
||||
|
@ -15,12 +15,20 @@ videoId: N1ttsMmcVMM
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: Question
|
||||
text: |
|
||||
What will the following code print out?:
|
||||
|
||||
```py
|
||||
a = np.arange(5)
|
||||
|
||||
print(a <= 3)
|
||||
```
|
||||
answers:
|
||||
- one
|
||||
- two
|
||||
- three
|
||||
solution: 3
|
||||
- "[False, False, False, False, True]"
|
||||
- "[5]"
|
||||
- "[0, 1, 2, 3]"
|
||||
- "[True, True, True, True, False]"
|
||||
solution: 4
|
||||
```
|
||||
|
||||
</section>
|
||||
|
@ -15,12 +15,12 @@ videoId: P-JjV6GBCmk
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: Question
|
||||
text: "Why is Numpy an important, but unpopular Python library?"
|
||||
answers:
|
||||
- one
|
||||
- two
|
||||
- three
|
||||
solution: 3
|
||||
- "Often you won't work directly with Numpy."
|
||||
- "It's is extremely slow."
|
||||
- "Working with Numpy is difficult."
|
||||
solution: 1
|
||||
```
|
||||
|
||||
</section>
|
||||
|
@ -15,12 +15,14 @@ videoId: YIqgrNLAZkA
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: Question
|
||||
text: |
|
||||
About how much memory does the integer `5` consume in plain Python?
|
||||
answers:
|
||||
- one
|
||||
- two
|
||||
- three
|
||||
solution: 3
|
||||
- 32 bits
|
||||
- 20 bytes
|
||||
- 16 bytes
|
||||
- 8 bits
|
||||
solution: 2
|
||||
```
|
||||
|
||||
</section>
|
||||
|
@ -15,12 +15,19 @@ videoId: eqSVcJbaPdk
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: Question
|
||||
text: |
|
||||
What is the value of `a` after you run the following code?:
|
||||
|
||||
```py
|
||||
a = np.arange(5)
|
||||
a + 20
|
||||
```
|
||||
|
||||
answers:
|
||||
- one
|
||||
- two
|
||||
- three
|
||||
solution: 3
|
||||
- "[20, 21, 22, 24, 24]"
|
||||
- "[0, 1, 2, 3, 4, 5]"
|
||||
- "[25, 26, 27, 28, 29]"
|
||||
solution: 2
|
||||
```
|
||||
|
||||
</section>
|
||||
|
@ -15,12 +15,51 @@ videoId: BFlH0fN5xRQ
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: Question
|
||||
text: |
|
||||
What will the following code print out?:
|
||||
|
||||
```py
|
||||
import pandas as pd
|
||||
|
||||
certificates_earned = pd.DataFrame({
|
||||
'Certificates': [8, 2, 5, 6],
|
||||
'Time (in months)': [16, 5, 9, 12]
|
||||
})
|
||||
names = ['Tom', 'Kris', 'Ahmad', 'Beau']
|
||||
|
||||
certificates_earned.index = names
|
||||
longest_streak = pd.Series([13, 11, 9, 7], index=names)
|
||||
certificates_earned['Longest streak'] = longest_streak
|
||||
|
||||
print(certificates_earned)
|
||||
```
|
||||
|
||||
answers:
|
||||
- one
|
||||
- two
|
||||
- three
|
||||
solution: 3
|
||||
- |
|
||||
```
|
||||
Tom 13
|
||||
Kris 11
|
||||
Ahmad 9
|
||||
Beau 7
|
||||
Name: Longest streak, dtype: int64
|
||||
```
|
||||
- |
|
||||
```
|
||||
Certificates Time (in months) Longest streak
|
||||
Tom 8 16 13
|
||||
Kris 2 5 11
|
||||
Ahmad 5 9 9
|
||||
Beau 6 12 7
|
||||
```
|
||||
- |
|
||||
```
|
||||
Certificates Longest streak
|
||||
Tom 8 13
|
||||
Kris 2 11
|
||||
Ahmad 5 9
|
||||
Beau 6 7
|
||||
```
|
||||
solution: 2
|
||||
```
|
||||
|
||||
</section>
|
||||
|
@ -15,11 +15,37 @@ videoId: _sSo2XZoB3E
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: Question
|
||||
text: |
|
||||
What code would add a "Certificates per month" column to the `certificates_earned` DataFrame like the one below?:
|
||||
|
||||
```
|
||||
Certificates Time (in months) Certificates per month
|
||||
Tom 8 16 0.50
|
||||
Kris 2 5 0.40
|
||||
Ahmad 5 9 0.56
|
||||
Beau 6 12 0.50
|
||||
```
|
||||
|
||||
answers:
|
||||
- one
|
||||
- two
|
||||
- three
|
||||
- |
|
||||
```py
|
||||
certificates_earned['Certificates'] /
|
||||
certificates_earned['Time (in months)']
|
||||
```
|
||||
- |
|
||||
```py
|
||||
certificates_earned['Certificates per month'] = round(
|
||||
certificates_earned['Certificates'] /
|
||||
certificates_earned['Time (in months)']
|
||||
)
|
||||
```
|
||||
- |
|
||||
```py
|
||||
certificates_earned['Certificates per month'] = round(
|
||||
certificates_earned['Certificates'] /
|
||||
certificates_earned['Time (in months)'], 2
|
||||
)
|
||||
```
|
||||
solution: 3
|
||||
```
|
||||
|
||||
|
@ -15,11 +15,43 @@ videoId: 7SgFBYXaiH0
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: Question
|
||||
text: |
|
||||
What will the following code print out?:
|
||||
|
||||
```py
|
||||
import pandas as pd
|
||||
|
||||
certificates_earned = pd.DataFrame({
|
||||
'Certificates': [8, 2, 5, 6],
|
||||
'Time (in months)': [16, 5, 9, 12]
|
||||
})
|
||||
|
||||
certificates_earned.index = ['Tom', 'Kris', 'Ahmad', 'Beau']
|
||||
|
||||
print(certificates_earned.iloc[2])
|
||||
```
|
||||
|
||||
answers:
|
||||
- one
|
||||
- two
|
||||
- three
|
||||
- |
|
||||
```
|
||||
Tom 16
|
||||
Kris 5
|
||||
Ahmad 9
|
||||
Beau 12
|
||||
Name: Time (in months), dtype: int64
|
||||
```
|
||||
- |
|
||||
```
|
||||
Certificates 6
|
||||
Time (in months) 12
|
||||
Name: Beau, dtype: int64
|
||||
```
|
||||
- |
|
||||
```
|
||||
Certificates 5
|
||||
Time (in months) 9
|
||||
Name: Ahmad, dtype: int64
|
||||
```
|
||||
solution: 3
|
||||
```
|
||||
|
||||
|
@ -15,11 +15,42 @@ videoId: -ZOrgV_aA9A
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: Question
|
||||
text: |
|
||||
What will the following code print out?:
|
||||
|
||||
```py
|
||||
import pandas as pd
|
||||
|
||||
certificates_earned = pd.Series(
|
||||
[8, 2, 5, 6],
|
||||
index=['Tom', 'Kris', 'Ahmad', 'Beau']
|
||||
)
|
||||
|
||||
print(certificates_earned[certificates_earned > 5])
|
||||
```
|
||||
|
||||
answers:
|
||||
- one
|
||||
- two
|
||||
- three
|
||||
- |
|
||||
```
|
||||
Tom True
|
||||
Kris False
|
||||
Ahmad False
|
||||
Beau True
|
||||
dtype: int64
|
||||
```
|
||||
- |
|
||||
```
|
||||
Tom 8
|
||||
Ahmad 5
|
||||
Beau 6
|
||||
dtype: int64
|
||||
```
|
||||
- |
|
||||
```
|
||||
Tom 8
|
||||
Beau 6
|
||||
dtype: int64
|
||||
```
|
||||
solution: 3
|
||||
```
|
||||
|
||||
|
@ -15,12 +15,46 @@ videoId: 0xACW-8cZU0
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: Question
|
||||
text: |
|
||||
What will the following code print out?:
|
||||
|
||||
```py
|
||||
import pandas as pd
|
||||
|
||||
certificates_earned = pd.Series(
|
||||
[8, 2, 5, 6],
|
||||
index=['Tom', 'Kris', 'Ahmad', 'Beau']
|
||||
)
|
||||
|
||||
print(certificates_earned)
|
||||
```
|
||||
|
||||
answers:
|
||||
- one
|
||||
- two
|
||||
- three
|
||||
solution: 3
|
||||
- |
|
||||
```
|
||||
Tom 8
|
||||
Kris 2
|
||||
Ahmad 5
|
||||
Beau 6
|
||||
dtype: int64
|
||||
```
|
||||
- |
|
||||
```
|
||||
Kris 2
|
||||
Ahmad 5
|
||||
Beau 6
|
||||
Tom 8
|
||||
dtype: int64
|
||||
```
|
||||
- |
|
||||
```
|
||||
Tom 8
|
||||
Kris 2
|
||||
Ahmad 5
|
||||
Beau 6
|
||||
Name: certificates_earned dtype: int64
|
||||
```
|
||||
solution: 1
|
||||
```
|
||||
|
||||
</section>
|
||||
|
@ -15,12 +15,12 @@ videoId: NzpU17ZVlUw
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: Question
|
||||
text: What is the main difference between lists and tuples in Python?
|
||||
answers:
|
||||
- one
|
||||
- two
|
||||
- three
|
||||
solution: 3
|
||||
- Tuples are immutable.
|
||||
- Lists are ordered.
|
||||
- Tuples are unordered.
|
||||
solution: 1
|
||||
```
|
||||
|
||||
</section>
|
||||
|
@ -17,9 +17,9 @@ videoId: MtgXS1MofRw
|
||||
question:
|
||||
text: What method does a <code>Cursor</code> instance have and what does it allow?
|
||||
answers:
|
||||
- The <code>Cursor</code> instance has a <code>.Run()</code> method which allows you to run SQL queries.
|
||||
- The <code>Cursor</code> instance has a <code>.Select()</code> method which allows you to select records.
|
||||
- The <code>Cursor</code> instance has a <code>.Execute()</code> method which will receive SQL parameters to run against the database.
|
||||
- The <code>Cursor</code> instance has a <code>.run()</code> method which allows you to run SQL queries.
|
||||
- The <code>Cursor</code> instance has a <code>.select()</code> method which allows you to select records.
|
||||
- The <code>Cursor</code> instance has an <code>.execute()</code> method which will receive SQL parameters to run against the database.
|
||||
solution: 3
|
||||
```
|
||||
|
||||
|
@ -15,12 +15,35 @@ videoId: cDnt02BcHng
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: Question
|
||||
text: |
|
||||
Given a file named `certificates.csv` with these contents:
|
||||
|
||||
```
|
||||
Name$Certificates$Time (in months)
|
||||
Tom$8$16
|
||||
Kris$2$5
|
||||
Ahmad$5$9
|
||||
Beau$6$12
|
||||
```
|
||||
|
||||
Fill in the blanks for the missing arguments below:
|
||||
|
||||
```py
|
||||
import csv
|
||||
|
||||
with open(___, 'r') as fp:
|
||||
reader = csv.reader(fp, delimiter=___)
|
||||
next(reader)
|
||||
for index, values in enumerate(reader):
|
||||
name, certs_num, months_num = values
|
||||
print(f"{name} earned {___} certificates in {months_num} months")
|
||||
```
|
||||
|
||||
answers:
|
||||
- one
|
||||
- two
|
||||
- three
|
||||
solution: 3
|
||||
- <code>'certificates.csv', '-', values</code>
|
||||
- <code>'certificates.csv', '$', certs_num</code>
|
||||
- <code>'certificates', '$', certs_num</code>
|
||||
solution: 2
|
||||
```
|
||||
|
||||
</section>
|
||||
|
Reference in New Issue
Block a user