diff --git a/guide/english/algorithms/greatest-common-divisor-euclidean/index.md b/guide/english/algorithms/greatest-common-divisor-euclidean/index.md index a81f133a99..ae268084df 100644 --- a/guide/english/algorithms/greatest-common-divisor-euclidean/index.md +++ b/guide/english/algorithms/greatest-common-divisor-euclidean/index.md @@ -65,6 +65,29 @@ function gcd(a, b) { } ``` +Python Code to Perform GCD using Recursion +```Python +def gcd(a, b): + if b == 0: + return a: + else: + return gcd(b, (a % b)) +``` + +Java Code to Perform GCD using Recursion +```Java +static int gcd(int a, int b) +{ + if(b == 0) + { + return a; + } + return gcd(b, a % b); +} + +``` + + You can also use the Euclidean Algorithm to find GCD of more than two numbers. Since, GCD is associative, the following operation is valid- `GCD(a,b,c) == GCD(GCD(a,b), c)`