chore(i18n,curriculum): update translations (#44186)

This commit is contained in:
camperbot
2021-11-17 03:53:39 -08:00
committed by GitHub
parent 8a785e92f0
commit 383bafa064
45 changed files with 580 additions and 436 deletions

View File

@ -1,6 +1,6 @@
---
id: 5900f3ef1000cf542c50ff01
title: 'Problem 129: Repunit divisibility'
title: '问题 129纯元数可分性'
challengeType: 5
forumTopicId: 301756
dashedName: problem-129-repunit-divisibility
@ -8,20 +8,20 @@ dashedName: problem-129-repunit-divisibility
# --description--
A number consisting entirely of ones is called a repunit. We shall define R(k) to be a repunit of length k; for example, R(6) = 111111.
完全由 1 组成的数字称为纯元数repunit。 我们定义 $R(k)$ 为长度为 $k$ 的纯元数;例如,$R(6) = 111111$。
Given that n is a positive integer and GCD(n, 10) = 1, it can be shown that there always exists a value, k, for which R(k) is divisible by n, and let A(n) be the least such value of k; for example, A(7) = 6 and A(41) = 5.
定义正整数 $n$ 满足 $GCD(n, 10) = 1$,可以证明总是存在 $k$,使 $R(k)$ 可以被 $n$ 整除,记 $A(n)$ 为满足条件的 $k$ 的最小值;例如,$A(7) = 6$ 而 $A(41) = 5$。
The least value of n for which A(n) first exceeds ten is 17.
使得 $A(n)$ 第一次超过 10 的 $n$ 的值是 17
Find the least value of n for which A(n) first exceeds one-million.
找到使得 $A(n)$ 第一次超过 100 万的 $n$ 的值。
# --hints--
`euler129()` should return 1000023.
`repunitDivisibility()` 应该返回 `1000023`
```js
assert.strictEqual(euler129(), 1000023);
assert.strictEqual(repunitDivisibility(), 1000023);
```
# --seed--
@ -29,12 +29,12 @@ assert.strictEqual(euler129(), 1000023);
## --seed-contents--
```js
function euler129() {
function repunitDivisibility() {
return true;
}
euler129();
repunitDivisibility();
```
# --solutions--

View File

@ -1,6 +1,6 @@
---
id: 5900f3ee1000cf542c50ff00
title: 'Problem 130: Composites with prime repunit property'
title: '问题 130具有素数纯元数特性的合数'
challengeType: 5
forumTopicId: 301758
dashedName: problem-130-composites-with-prime-repunit-property
@ -8,22 +8,22 @@ dashedName: problem-130-composites-with-prime-repunit-property
# --description--
A number consisting entirely of ones is called a repunit. We shall define R(k) to be a repunit of length k; for example, R(6) = 111111.
完全由 1 组成的数字称为纯元数repunit。 我们定义 $R(k)$ 为长度为 $k$ 的纯元数;例如, $R(6) = 111111$。
Given that n is a positive integer and GCD(n, 10) = 1, it can be shown that there always exists a value, k, for which R(k) is divisible by n, and let A(n) be the least such value of k; for example, A(7) = 6 and A(41) = 5.
定义正整数 $n$ 满足 $GCD(n, 10) = 1$,可以证明总是存在 $k$,使 $R(k)$ 可以被 $n$ 整除,记 $A(n)$ 为满足条件的 $k$ 的最小值;例如,$A(7) = 6$ 而 $A(41) = 5$。
You are given that for all primes, p > 5, that p 1 is divisible by A(p). For example, when p = 41, A(41) = 5, and 40 is divisible by 5.
已知,对于所有的素数 $p > 5$$p 1$ 可以被 $A(p)$ 整除。 例如,当 $p = 41, A(41) = 5$,而 40 可以被 5 整除。
However, there are rare composite values for which this is also true; the first five examples being 91, 259, 451, 481, and 703.
然而,也有一些罕见的复合值也是如此。前五个示例是 91259451481 703
Find the sum of the first twenty-five composite values of n for whichGCD(n, 10) = 1 and n 1 is divisible by A(n).
找出 $n$ 的前 25 个复合值的总和,其中 $GCD(n, 10) = 1$ 且 $n 1$ 可被 $A(n)$ 整除。
# --hints--
`euler130()` should return 149253.
`compositeRepunit()` 应该返回 `149253`
```js
assert.strictEqual(euler130(), 149253);
assert.strictEqual(compositeRepunit(), 149253);
```
# --seed--
@ -31,12 +31,12 @@ assert.strictEqual(euler130(), 149253);
## --seed-contents--
```js
function euler130() {
function compositeRepunit() {
return true;
}
euler130();
compositeRepunit();
```
# --solutions--

View File

@ -1,6 +1,6 @@
---
id: 5900f3ef1000cf542c50ff02
title: 'Problem 131: Prime cube partnership'
title: '问题 131立方伙伴素数'
challengeType: 5
forumTopicId: 301759
dashedName: problem-131-prime-cube-partnership
@ -8,20 +8,20 @@ dashedName: problem-131-prime-cube-partnership
# --description--
There are some prime values, p, for which there exists a positive integer, n, such that the expression n3 + n2p is a perfect cube.
存在一些素数 $p$,使得存在正整数 $n$,让算式 $n^3 + n^{2}p$ 得到一个立方数。
For example, when p = 19, 83 + 82×19 = 123.
例如当 $p = 19,\\ 8^3 + 8^2 × 19 = {12}^3$。
What is perhaps most surprising is that for each prime with this property the value of n is unique, and there are only four such primes below one-hundred.
最奇特的是 $n$ 的值对于这个素数具有唯一性100 以内只有四个这种素数。
How many primes below one million have this remarkable property?
一百万以下的素数有多少具有这种非凡特性?
# --hints--
`euler131()` should return 173.
`primeCubePartnership()` 应该返回 `173`
```js
assert.strictEqual(euler131(), 173);
assert.strictEqual(primeCubePartnership(), 173);
```
# --seed--
@ -29,12 +29,12 @@ assert.strictEqual(euler131(), 173);
## --seed-contents--
```js
function euler131() {
function primeCubePartnership() {
return true;
}
euler131();
primeCubePartnership();
```
# --solutions--

View File

@ -1,6 +1,6 @@
---
id: 5900f3f11000cf542c50ff03
title: 'Problem 132: Large repunit factors'
title: '问题 132大纯元数因子'
challengeType: 5
forumTopicId: 301760
dashedName: problem-132-large-repunit-factors
@ -8,18 +8,18 @@ dashedName: problem-132-large-repunit-factors
# --description--
A number consisting entirely of ones is called a repunit. We shall define R(k) to be a repunit of length k.
完全由 1 组成的数字称为纯元数repunit。 我们定义 $R(k)$ 为长度 $k$ 的纯元数。
For example, R(10) = 1111111111 = 11×41×271×9091, and the sum of these prime factors is 9414.
例如 $R(10) = 1111111111 = 11 × 41 × 271 × 9091$,则其素数因子的和为 9414
Find the sum of the first forty prime factors of R(109).
求 $R({10}^9)$ 的前 40 个素数因子的和。
# --hints--
`euler132()` should return 843296.
`largeRepunitFactors()` 应该返回 `843296`
```js
assert.strictEqual(euler132(), 843296);
assert.strictEqual(largeRepunitFactors(), 843296);
```
# --seed--
@ -27,12 +27,12 @@ assert.strictEqual(euler132(), 843296);
## --seed-contents--
```js
function euler132() {
function largeRepunitFactors() {
return true;
}
euler132();
largeRepunitFactors();
```
# --solutions--

View File

@ -1,6 +1,6 @@
---
id: 5900f3f21000cf542c50ff04
title: 'Problem 133: Repunit nonfactors'
title: '问题 133纯元数非因子'
challengeType: 5
forumTopicId: 301761
dashedName: problem-133-repunit-nonfactors
@ -8,20 +8,20 @@ dashedName: problem-133-repunit-nonfactors
# --description--
A number consisting entirely of ones is called a repunit. We shall define R(k) to be a repunit of length k; for example, R(6) = 111111.
完全由 1 组成的数字称为纯元数。 定义 $R(k)$ 为长度为 $k$ 的纯元数;例如,$R(6) = 111111$。
Let us consider repunits of the form R(10n).
让我们考虑形式为 $R({10}^n)$ 的纯元数。
Although R(10), R(100), or R(1000) are not divisible by 17, R(10000) is divisible by 17. Yet there is no value of n for which R(10n) will divide by 19. In fact, it is remarkable that 11, 17, 41, and 73 are the only four primes below one-hundred that can be a factor of R(10n).
尽管 $R(10)$、$R(100)$ 或 $R(1000)$ 不能被 17 整除,但 $R(10000)$ 可以被 17 整除。 然而没有 $R({10}^n)$ 可以被 19 整除。 值得注意的是11、17、41 和 73 是仅有的四个小于 100 的质数可以是 $R({10}^n)$ 的因数。
Find the sum of all the primes below one-hundred thousand that will never be a factor of R(10n).
求十万以内不能成为 $R({10}^n)$ 因子的素数的和。
# --hints--
`euler133()` should return 453647705.
`repunitNonfactors()` 应该返回 `453647705`
```js
assert.strictEqual(euler133(), 453647705);
assert.strictEqual(repunitNonfactors(), 453647705);
```
# --seed--
@ -29,12 +29,12 @@ assert.strictEqual(euler133(), 453647705);
## --seed-contents--
```js
function euler133() {
function repunitNonfactors() {
return true;
}
euler133();
repunitNonfactors();
```
# --solutions--

View File

@ -1,6 +1,6 @@
---
id: 5900f3f21000cf542c50ff05
title: 'Problem 134: Prime pair connection'
title: '问题 134素数对连接'
challengeType: 5
forumTopicId: 301762
dashedName: problem-134-prime-pair-connection
@ -8,18 +8,18 @@ dashedName: problem-134-prime-pair-connection
# --description--
Consider the consecutive primes p1 = 19 and p2 = 23. It can be verified that 1219 is the smallest number such that the last digits are formed by p1 whilst also being divisible by p2.
考虑连续的素数 $p_1 = 19$ 和 $p_2 = 23$。 可以验证 1219 是最小的以数字 $p_1$ 形成低位部分,而又能够被 $p_2$ 整除的数字。
In fact, with the exception of p1 = 3 and p2 = 5, for every pair of consecutive primes, p2 > p1, there exist values of n for which the last digits are formed by p1 and n is divisible by p2. Let S be the smallest of these values of n.
事实上,除了 $p_1 = 3$ 和 $p_2 = 5$ 之外,对于每对连续的素数,$p_2 > p_1$,都存在 $n$ 的值,其最后一位数字由 $p_1$ 组成而 $n$ 可以被 $p_2$ 整除。 记 $S$ 为这种 $n$ 中的最小值。
Find ∑ S for every pair of consecutive primes with 5 ≤ p1 ≤ 1000000.
对连续素数对 $5 ≤ p_1 ≤ 1000000$ 求 $\sum{S}$。
# --hints--
`euler134()` should return 18613426663617120.
`primePairConnection()` 应得 `18613426663617120`
```js
assert.strictEqual(euler134(), 18613426663617120);
assert.strictEqual(primePairConnection(), 18613426663617120);
```
# --seed--
@ -27,12 +27,12 @@ assert.strictEqual(euler134(), 18613426663617120);
## --seed-contents--
```js
function euler134() {
function primePairConnection() {
return true;
}
euler134();
primePairConnection();
```
# --solutions--

View File

@ -1,6 +1,6 @@
---
id: 5900f3f61000cf542c50ff09
title: 'Problem 138: Special isosceles triangles'
title: '问题 138特殊的等腰三角形'
challengeType: 5
forumTopicId: 301766
dashedName: problem-138-special-isosceles-triangles
@ -8,16 +8,22 @@ dashedName: problem-138-special-isosceles-triangles
# --description--
Consider the isosceles triangle with base length, b = 16, and legs, L = 17.
考虑一个底边长为 $b = 16$,腰长为 $L = 17$ 的等腰三角形。
By using the Pythagorean theorem it can be seen that the height of the triangle, h = √(172 82) = 15, which is one less than the base length. With b = 272 and L = 305, we get h = 273, which is one more than the base length, and this is the second smallest isosceles triangle with the property that h = b ± 1. Find ∑ L for the twelve smallest isosceles triangles for which h = b ± 1 and b, L are positive integers.
<img class="img-responsive center-block" alt="等腰三角形有两条长度相等记为 L 的腰,和一条记为 b 底;则该三角形的高 h 为从底边作高至两条腰的夹角。" src="https://cdn.freecodecamp.org/curriculum/project-euler/special-isosceles-triangles.png" style="background-color: white; padding: 10px;" />
使用毕达哥拉斯定理,可以求出三角形的高为 $h = \sqrt{{17}^2 8^2} = 15$,恰好比底边长度小 1。
当等腰三角形底边长为 $b = 272$,腰长为 $L = 305$ 时,计算可得高为 $h = 273$,恰好比底边长度大 1并且这是第二小的满足性质 $h = b ± 1$ 的等腰三角形。
找到最小的 12 个满足 $h = b ± 1$ 且 $b$$L$ 均为正整数的等腰三角形,求 $\sum{L}$。
# --hints--
`euler138()` should return 1118049290473932.
`isoscelesTriangles()` 应该返回 `1118049290473932`
```js
assert.strictEqual(euler138(), 1118049290473932);
assert.strictEqual(isoscelesTriangles(), 1118049290473932);
```
# --seed--
@ -25,12 +31,12 @@ assert.strictEqual(euler138(), 1118049290473932);
## --seed-contents--
```js
function euler138() {
function isoscelesTriangles() {
return true;
}
euler138();
isoscelesTriangles();
```
# --solutions--

View File

@ -1,6 +1,6 @@
---
id: 5900f3fd1000cf542c50ff10
title: 'Problem 145: How many reversible numbers are there below one-billion?'
title: '问题 145有多少个小于十亿的可逆数'
challengeType: 5
forumTopicId: 301774
dashedName: problem-145-how-many-reversible-numbers-are-there-below-one-billion
@ -8,18 +8,18 @@ dashedName: problem-145-how-many-reversible-numbers-are-there-below-one-billion
# --description--
Some positive integers n have the property that the sum \[ n + reverse(n) ] consists entirely of odd (decimal) digits. For instance, 36 + 63 = 99 and 409 + 904 = 1313. We will call such numbers reversible; so 36, 63, 409, and 904 are reversible. Leading zeroes are not allowed in either n or reverse(n).
一些正整数 $n$ 满足如下性质:该数与其逆序数之和 [ $n + reverse(n)$ ] 全部由奇数(十进制)组成。 例如,$36 + 63 = 99$ 和 $409 + 904 = 1313$。 我们称这些数字是可逆的;所以 36、63、409 和 904 均为可逆的。 无论是 $n$ 还是 $reverse(n)$ 均不允许出现前导零。
There are 120 reversible numbers below one-thousand.
小于一千的可逆数有 120 个。
How many reversible numbers are there below one-billion (109)?
请求出有多少个小于十亿(${10}^9$)的可逆数?
# --hints--
`euler145()` should return 608720.
`reversibleNumbers()` 应该返回 `608720`
```js
assert.strictEqual(euler145(), 608720);
assert.strictEqual(reversibleNumbers(), 608720);
```
# --seed--
@ -27,12 +27,12 @@ assert.strictEqual(euler145(), 608720);
## --seed-contents--
```js
function euler145() {
function reversibleNumbers() {
return true;
}
euler145();
reversibleNumbers();
```
# --solutions--

View File

@ -1,6 +1,6 @@
---
id: 5900f36f1000cf542c50fe82
title: 'Problem 3: Largest prime factor'
title: '问题 3最大素数因子'
challengeType: 5
forumTopicId: 301952
dashedName: problem-3-largest-prime-factor
@ -8,55 +8,55 @@ dashedName: problem-3-largest-prime-factor
# --description--
The prime factors of 13195 are 5, 7, 13 and 29.
13195 的素数因子是 5、7、13 和 29
What is the largest prime factor of the given `number`?
求给出数 `number` 的最大素数因子是多少?
# --hints--
`largestPrimeFactor(2)` should return a number.
`largestPrimeFactor(2)` 应该返回一个数字。
```js
assert(typeof largestPrimeFactor(2) === 'number');
```
`largestPrimeFactor(2)` should return 2.
`largestPrimeFactor(2)` 应该返回 2
```js
assert.strictEqual(largestPrimeFactor(2), 2);
```
`largestPrimeFactor(3)` should return 3.
`largestPrimeFactor(3)` 应该返回 3
```js
assert.strictEqual(largestPrimeFactor(3), 3);
```
`largestPrimeFactor(5)` should return 5.
`largestPrimeFactor(5)` 应该返回 5
```js
assert.strictEqual(largestPrimeFactor(5), 5);
```
`largestPrimeFactor(7)` should return 7.
`largestPrimeFactor(7)` 应该返回 7
```js
assert.strictEqual(largestPrimeFactor(7), 7);
```
`largestPrimeFactor(8)` should return 2.
`largestPrimeFactor(8)` 应该返回 2
```js
assert.strictEqual(largestPrimeFactor(8), 2);
```
`largestPrimeFactor(13195)` should return 29.
`largestPrimeFactor(13195)` 应该返回 29
```js
assert.strictEqual(largestPrimeFactor(13195), 29);
```
`largestPrimeFactor(600851475143)` should return 6857.
`largestPrimeFactor(600851475143)` 应该返回 6857
```js
assert.strictEqual(largestPrimeFactor(600851475143), 6857);