chore(i18n,curriculum): update translations (#44186)

This commit is contained in:
camperbot
2021-11-17 03:53:39 -08:00
committed by GitHub
parent 8a785e92f0
commit 383bafa064
45 changed files with 580 additions and 436 deletions

View File

@@ -1,6 +1,6 @@
---
id: 5900f45f1000cf542c50ff71
title: 'Problem 242: Odd Triplets'
title: 'Problema 242: Trios de números ímpares'
challengeType: 5
forumTopicId: 301889
dashedName: problem-242-odd-triplets
@@ -8,20 +8,20 @@ dashedName: problem-242-odd-triplets
# --description--
Given the set {1,2,...,n}, we define f(n,k) as the number of its k-element subsets with an odd sum of elements. For example, f(5,3) = 4, since the set {1,2,3,4,5} has four 3-element subsets having an odd sum of elements, i.e.: {1,2,4}, {1,3,5}, {2,3,4} and {2,4,5}.
Dado o conjunto {1,2,..., $n$}, definimos $f(n, k)$ como o número de seus subconjuntos de $k$ elementos com uma soma ímpar de elementos. Por exemplo, $f(5,3) = 4$, já que o conjunto {1,2,3,4,5} tem quatro subconjuntos de 3 elementos com uma soma ímpar de elementos, sejam eles: {1,2,4}, {1,3,5}, {2,3,4} e {2,4,5}.
When all three values n, k and f(n,k) are odd, we say that they make an odd-triplet \[n,k,f(n,k)].
Quando todos os três valores de $n$, $k$ e $f(n, k)$ são ímpares, dizemos que eles fazem um trio de ímpares $[n, k, f(n, k)]$.
There are exactly five odd-triplets with n ≤ 10, namely: \[1,1,f(1,1) = 1], \[5,1,f(5,1) = 3], \[5,5,f(5,5) = 1], \[9,1,f(9,1) = 5] and \[9,9,f(9,9) = 1].
Há exatamente cinco trios de ímpares com $n ≤ 10$. São eles: $[1, 1, f(1, 1) = 1]$, $[5, 1, f(5, 1) = 3]$, $[5, 5, f(5, 5) = 1]$, $[9, 1, f(9, 1) = 5]$ e $[9, 9, f(9, 9) = 1]$.
How many odd-triplets are there with n ≤ 1012 ?
Quantos trios de ímpares existem com $n ≤ {10}^{12}$?
# --hints--
`euler242()` should return 997104142249036700.
`oddTriplets()` deve retornar `997104142249036700`.
```js
assert.strictEqual(euler242(), 997104142249036700);
assert.strictEqual(oddTriplets(), 997104142249036700);
```
# --seed--
@@ -29,12 +29,12 @@ assert.strictEqual(euler242(), 997104142249036700);
## --seed-contents--
```js
function euler242() {
function oddTriplets() {
return true;
}
euler242();
oddTriplets();
```
# --solutions--