chore(i18n,curriculum): processed translations (#42868)

This commit is contained in:
camperbot
2021-07-16 11:03:16 +05:30
committed by GitHub
parent 1f5f07cad3
commit 3b32da0191
429 changed files with 7502 additions and 4006 deletions

View File

@ -1,6 +1,6 @@
---
id: 5e9a0e9ef99a403d019610cc
title: Deep Learning Demystified
title: 解密深度學習
challengeType: 11
videoId: bejQ-W9BGJg
dashedName: deep-learning-demystified
@ -10,23 +10,23 @@ dashedName: deep-learning-demystified
## --text--
How should you assign weights to input neurons before training your network for the first time?
在你第一次訓練你的網絡之前,你應該如何給輸入層節點分配權重?
## --answers--
From smallest to largest.
從小到大
---
Completely randomly.
完全隨機的
---
Alphabetically.
按字母順序
---
None of the above.
以上都不對
## --video-solution--

View File

@ -1,6 +1,6 @@
---
id: 5e9a0e9ef99a403d019610cd
title: How Convolutional Neural Networks work
title: 卷積神經網絡的工作原理
challengeType: 11
videoId: Y5M7KH4A4n4
dashedName: how-convolutional-neural-networks-work
@ -10,19 +10,19 @@ dashedName: how-convolutional-neural-networks-work
## --text--
When are Convolutional Neural Networks not useful?
卷積神經網絡在什麼時候是沒有用的?
## --answers--
If your data can't be made to look like an image, or if you can rearrange elements of your data and it's still just as useful.
當數據的組成形式不能像圖片存儲的數據格式一樣,或者說你的數據可以重新排列,它仍然可以被運用到卷積神經網絡中。
---
If your data is made up of different 2D or 3D images.
如果你的數據是由 2D 或者 3D 圖片組成的。
---
If your data is text or sound based.
如果你的數據是基於文本或者音頻的形式。
## --video-solution--

View File

@ -1,6 +1,6 @@
---
id: 5e9a0e9ef99a403d019610ca
title: How Deep Neural Networks Work
title: 深度神經網絡的工作原理
challengeType: 11
videoId: zvalnHWGtx4
dashedName: how-deep-neural-networks-work
@ -10,19 +10,19 @@ dashedName: how-deep-neural-networks-work
## --text--
Why is it better to calculate the gradient (slope) directly rather than numerically?
相比較數字的計算,爲什麼深度神經網絡可以更好地計算梯度(斜率)?
## --answers--
It is computationally expensive to go back through the entire neural network and adjust the weights for each layer of the neural network.
通過回溯整個神經網絡來更改每一層神經網絡的權重,在計算上來說是非常耗時的。
---
It is more accurate.
它更加準確。
---
There is no difference between the two methods.
這兩種方法之間沒有區別。
## --video-solution--

View File

@ -1,6 +1,6 @@
---
id: 5e9a0e9ef99a403d019610cb
title: Recurrent Neural Networks RNN and Long Short Term Memory LSTM
title: 循環神經網絡 RNN 和長短期記憶 LSTM
challengeType: 11
videoId: UVimlsy9eW0
dashedName: recurrent-neural-networks-rnn-and-long-short-term-memory-lstm
@ -10,19 +10,19 @@ dashedName: recurrent-neural-networks-rnn-and-long-short-term-memory-lstm
## --text--
What are the main neural network components that make up a Long Short Term Memory network?
構成長短期記憶網絡的主要神經網絡組件是什麼?
## --answers--
New information and prediction.
新的信息和預測
---
Prediction, collected possibilities, and selection.
預測、收集的可能性和選擇
---
Prediction, ignoring, forgetting, and selection.
預測、忽視、遺忘和選擇
## --video-solution--