chore(i18n,learn): processed translations (#45599)

This commit is contained in:
camperbot
2022-04-02 14:16:30 +05:30
committed by GitHub
parent f7afac00a6
commit 40a6abe1b0
104 changed files with 4316 additions and 108 deletions

View File

@ -14,15 +14,18 @@ dashedName: problem-467-superinteger
$p(n)$ を $n$ 番目の素数とし、$c(n)$ を $n$ 番目の合成数とします。 例えば、$p(1) = 2$, $p(10) = 29$, $c(1) = 4$, $c(10) = 18$ です。
$$\begin{align} & \\{p(i) : i ≥ 1\\} = \\{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, \ldots \\} \\\\ & \\{c(i) : i ≥ 1\\} = \\{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, \ldots \\} \end{align}$$
$$\begin{align} & \\{p(i) : i ≥ 1\\} = \\{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, \ldots \\} \\\\
& \\{c(i) : i ≥ 1\\} = \\{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, \ldots \\} \end{align}$$
$\\{p(i)\\}$ の数字根からなる数列を $P^D$ とすると、次のようになります ($C^D$ は $\\{c(i)\\}$ に対して同様に定義されます)。
$$\begin{align} & P^D = \\{2, 3, 5, 7, 2, 4, 8, 1, 5, 2, \ldots \\} \\\\ & C^D = \\{4, 6, 8, 9, 1, 3, 5, 6, 7, 9, \ldots \\} \end{align}$$
$$\begin{align} & P^D = \\{2, 3, 5, 7, 2, 4, 8, 1, 5, 2, \ldots \\} \\\\
& C^D = \\{4, 6, 8, 9, 1, 3, 5, 6, 7, 9, \ldots \\} \end{align}$$
$P^D$ の最初の $n$ 個の要素をつなげた整数を $P_n$ とします ($C_n$ は $C^D$ に対して同様に定義されます)。
$$\begin{align} & P_{10} = 2\\,357\\,248\\,152 \\\\ & C_{10} = 4\\,689\\,135\\,679 \end{align}$$
$$\begin{align} & P_{10} = 2\\,357\\,248\\,152 \\\\
& C_{10} = 4\\,689\\,135\\,679 \end{align}$$
$P_n$ と $C_n$ の共通の超越整数である最小の正の整数を、$f(n)$ とします。 例えば、$f(10) = 2\\,357\\,246\\,891\\,352\\,679$, $f(100)\bmod 1\\,000\\,000\\,007 = 771\\,661\\,825$ です。