chore(i18n,learn): processed translations (#45621)

This commit is contained in:
camperbot
2022-04-05 16:51:38 +05:30
committed by GitHub
parent d976e9a853
commit 4795af3b51
52 changed files with 216 additions and 141 deletions

View File

@ -1,6 +1,6 @@
---
id: 5900f4801000cf542c50ff93
title: 'Problem 276: Primitive Triangles'
title: 'Problema 276: Triángulos primitivos'
challengeType: 5
forumTopicId: 301926
dashedName: problem-276-primitive-triangles
@ -8,18 +8,18 @@ dashedName: problem-276-primitive-triangles
# --description--
Consider the triangles with integer sides a, b and c with a ≤ b ≤ c.
Consideremos los triángulos con lados enteros $a$, $b$ y $c$ con $a ≤ b ≤ c$.
An integer sided triangle (a,b,c) is called primitive if gcd(a,b,c)=1.
Un triángulo de lados enteros $(a,b,c)$ se llama primitivo si $gcd(a,b,c) = 1$.
How many primitive integer sided triangles exist with a perimeter not exceeding 10 000 000?
¿Cuántos triángulos primitivos de lados enteros existen con un perímetro que no supere los $10\,000\,000$?
# --hints--
`euler276()` should return 5777137137739633000.
`Triángulos primitivos()` debe devolver `5777137137739633000`.
```js
assert.strictEqual(euler276(), 5777137137739633000);
assert.strictEqual(primitiveTriangles(), 5777137137739633000);
```
# --seed--
@ -27,12 +27,12 @@ assert.strictEqual(euler276(), 5777137137739633000);
## --seed-contents--
```js
function euler276() {
function primitiveTriangles() {
return true;
}
euler276();
primitiveTriangles();
```
# --solutions--

View File

@ -1,6 +1,6 @@
---
id: 5900f4e51000cf542c50fff7
title: 'Problem 376: Nontransitive sets of dice'
title: 'Problema 376: Conjuntos no transitorios de dados'
challengeType: 5
forumTopicId: 302038
dashedName: problem-376-nontransitive-sets-of-dice
@ -8,30 +8,45 @@ dashedName: problem-376-nontransitive-sets-of-dice
# --description--
Consider the following set of dice with nonstandard pips:
Considera el siguiente conjunto de dados con pips no estándar:
Die A: 1 4 4 4 4 4 Die B: 2 2 2 5 5 5 Die C: 3 3 3 3 3 6
$$\Inicio{array}{} \text{Die A: } & 1 & 4 & 4 & 4 & 4 & 4 \\\\
\text{Die B: } & 2 & 2 & 2 & 5 & 5 & 5 \\\\ \text{Die C: } & 3 & 3 & 3 & 3 & 3 & 6 \\\\
\fin{array}$$
A game is played by two players picking a die in turn and rolling it. The player who rolls the highest value wins.
Un juego es jugado por dos jugadores que escogen un dado por turno y lo lanzan. El jugador que tire el valor más alto gana.
If the first player picks die A and the second player picks die B we get P(second player wins) = 7/12 > 1/2
Si el primer jugador escoge el dado $A$ y el segundo jugador toma el dado $B$ obtenemos
If the first player picks die B and the second player picks die C we get P(second player wins) = 7/12 > 1/2
$P(\text{second player wins}) = \frac{7}{12} > \frac{1}{2}$
If the first player picks die C and the second player picks die A we get P(second player wins) = 25/36 > 1/2
Si el primer jugador elige el dado $B$ y el segundo jugador elige el dado $C$ obtenemos
So whatever die the first player picks, the second player can pick another die and have a larger than 50% chance of winning. A set of dice having this property is called a nontransitive set of dice.
$P(\text{second player wins}) = \frac{7}{12} > \frac{1}{2}$
We wish to investigate how many sets of nontransitive dice exist. We will assume the following conditions:There are three six-sided dice with each side having between 1 and N pips, inclusive. Dice with the same set of pips are equal, regardless of which side on the die the pips are located. The same pip value may appear on multiple dice; if both players roll the same value neither player wins. The sets of dice {A,B,C}, {B,C,A} and {C,A,B} are the same set.
Si el primer jugador elige el dado $C$ y el segundo jugador elige el dado $A$ obtenemos
For N = 7 we find there are 9780 such sets. How many are there for N = 30 ?
$P(\text{second player wins}) = \frac{25}{36} > \frac{1}{2}$
Así que, sea cual sea el dado que el primer jugador escoja, el segundo jugador puede elegir otro dado y tener más de un 50% de probabilidades de ganar. Un conjunto de dados que tienen esta propiedad se llama un conjunto no transitivo de dados.
Queremos investigar cuántos conjuntos de dados no transitivos existen. Asumiremos las siguientes condiciones:
- Hay tres dados de seis caras con cada lado que tiene entre 1 y $N$ pips, incluído.
- Los dados con el mismo conjunto de puntos son iguales, independientemente del lado en el que se encuentren los puntos.
- El mismo valor de puntos puede aparecer en múltiples dados; si ambos jugadores tiran el mismo valor ningún jugador gana.
- Los conjuntos de dados {A, B, C}, {B, C, A} y {C, A, B} son el mismo conjunto.
Para N = 7 encontramos que hay 9780 conjuntos de este tipo.
¿Cuántos hay para N = 30?
# --hints--
`euler376()` should return 973059630185670.
`nontransitiveSetsOfDice()` debería devolver `973059630185670`.
```js
assert.strictEqual(euler376(), 973059630185670);
assert.strictEqual(nontransitiveSetsOfDice(), 973059630185670);
```
# --seed--
@ -39,12 +54,12 @@ assert.strictEqual(euler376(), 973059630185670);
## --seed-contents--
```js
function euler376() {
function nontransitiveSetsOfDice() {
return true;
}
euler376();
nontransitiveSetsOfDice();
```
# --solutions--

View File

@ -1,6 +1,6 @@
---
id: 5900f50c1000cf542c51001e
title: 'Problem 415: Titanic sets'
title: 'Problema 415: Conjuntos Titanic'
challengeType: 5
forumTopicId: 302084
dashedName: problem-415-titanic-sets
@ -8,22 +8,22 @@ dashedName: problem-415-titanic-sets
# --description--
A set of lattice points S is called a titanic set if there exists a line passing through exactly two points in S.
Un conjunto de puntos de celosía $S$ se denomina conjunto titanic si existe una línea que pasa exactamente por dos puntos en $S$.
An example of a titanic set is S = {(0, 0), (0, 1), (0, 2), (1, 1), (2, 0), (1, 0)}, where the line passing through (0, 1) and (2, 0) does not pass through any other point in S.
Un ejemplo de un conjunto titanic es $S = \\{(0, 0), (0, 1), (0, 2), (1, 1), (2, 0), (1, 0)\\}$, donde la linea pasa a través de (0, 1) y (2, 0) no pasa a través de ningun otro punto en $S$.
On the other hand, the set {(0, 0), (1, 1), (2, 2), (4, 4)} is not a titanic set since the line passing through any two points in the set also passes through the other two.
Por otra parte, el conjunto {(0, 0), (1, 1), (2, 2), (4, 4)} no es un conjunto titanic ya que la línea que pasa por cualquiera de los dos puntos del conjunto también pasa por los otros dos.
For any positive integer N, let T(N) be the number of titanic sets S whose every point (x, y) satisfies 0 ≤ x, y ≤ N. It can be verified that T(1) = 11, T(2) = 494, T(4) = 33554178, T(111) mod 108 = 13500401 and T(105) mod 108 = 63259062.
Para cualquier entero positivo $N$, sea $T(N)$ el número de conjuntos titánicos $S$ cuyos puntos ($x$, $y$) satisfacen $ 0 ≤ x$, $y ≤ N$. Se puede comprobar que $T(1) = 11$, $T(2) = 494$, $T(4) = 33\4\ 178$, $T(111)\bmod {10}^8 = 13\ 500\ 401$ y $T({10}^5)\bmod {10}^8 = 63\ 259\ 062$.
Find T(1011) mod 108.
Encuentra $T({10}^{11})\bmod {10}^8$.
# --hints--
`euler415()` should return 55859742.
`titanicSets()` debe regresar `55859742`.
```js
assert.strictEqual(euler415(), 55859742);
assert.strictEqual(titanicSets(), 55859742);
```
# --seed--
@ -31,12 +31,12 @@ assert.strictEqual(euler415(), 55859742);
## --seed-contents--
```js
function euler415() {
function titanicSets() {
return true;
}
euler415();
titanicSets();
```
# --solutions--

View File

@ -1,6 +1,6 @@
---
id: 5900f5351000cf542c510047
title: 'Problem 456: Triangles containing the origin II'
title: 'Problema 456: Triángulos que contienen el origen II'
challengeType: 5
forumTopicId: 302130
dashedName: problem-456-triangles-containing-the-origin-ii
@ -8,24 +8,28 @@ dashedName: problem-456-triangles-containing-the-origin-ii
# --description--
Define:xn = (1248n mod 32323) - 16161yn = (8421n mod 30103) - 15051
Definiendo:
Pn = {(x1, y1), (x2, y2), ..., (xn, yn)}
$$\begin{align} & x_n = ({1248}^n\bmod 32323) - 16161 \\\\
& y_n = ({8421}^n\bmod 30103) - 15051 \\\\ & P_n = \\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\\} \end{align}$$
For example, P8 = {(-14913, -6630), (-10161, 5625), (5226, 11896), (8340, -10778), (15852, -5203), (-15165, 11295), (-1427, -14495), (12407, 1060)}.
Por ejemplo, $$P_8 = \\{(-14913, -6630), (-10161, 5625), (5226, 11896), (8340, -10778), (15852, -5203), (-15165, 11295), (-1427, -14495), (12407, 1060)\\}$$
Let C(n) be the number of triangles whose vertices are in Pn which contain the origin in the interior.
Sea $C(n)$ el número de triángulos cuyos vértices están en $P_n$ que contiene el origen en el interior.
Examples: C(8) = 20 C(600) = 8950634 C(40 000) = 2666610948988
Ejemplos:
Find C(2 000 000).
$$\begin{align} & C(8) = 20 \\\\
& C(600) = 8\\,950\\,634 \\\\ & C(40\\,000) = 2\\,666\\,610\\,948\\,988 \end{align}$$
Calcular $C(2\\,000\\,000)$.
# --hints--
`euler456()` should return 333333208685971500.
`trianglesContainingOriginTwo()` debería retornar `333333208685971500`.
```js
assert.strictEqual(euler456(), 333333208685971500);
assert.strictEqual(trianglesContainingOriginTwo(), 333333208685971500);
```
# --seed--
@ -33,12 +37,12 @@ assert.strictEqual(euler456(), 333333208685971500);
## --seed-contents--
```js
function euler456() {
function trianglesContainingOriginTwo() {
return true;
}
euler456();
trianglesContainingOriginTwo();
```
# --solutions--

View File

@ -1,6 +1,6 @@
---
id: 5a23c84252665b21eecc7e03
title: Cumulative standard deviation
title: Desviación estándar acumulada
challengeType: 5
forumTopicId: 302240
dashedName: cumulative-standard-deviation
@ -8,41 +8,41 @@ dashedName: cumulative-standard-deviation
# --description--
Write a function that takes an array of numbers as parameter and returns the [standard deviation](https://en.wikipedia.org/wiki/Standard Deviation) of the series.
Escriba una función que tome un array de números como parámetro y devuelva la [ desviación estándard](https://en.wikipedia.org/wiki/Standard_deviation) de la serie.
# --hints--
`standardDeviation` should be a function.
`standardDeviation` debe ser una funcn.
```js
assert(typeof standardDeviation == 'function');
```
`standardDeviation([2, 4, 4, 4, 5, 5, 7, 9])` should return a number.
`standardDeviation([2, 4, 4, 4, 5, 5, 7, 9])` debe devolver un número.
```js
assert(typeof standardDeviation([2, 4, 4, 4, 5, 5, 7, 9]) == 'number');
```
`standardDeviation([2, 4, 4, 4, 5, 5, 7, 9])` should return `2`.
`standardDeviation([2, 4, 4, 4, 5, 5, 7, 9])` debe devolver `2`.
```js
assert.equal(standardDeviation([2, 4, 4, 4, 5, 5, 7, 9]), 2);
```
`standardDeviation([600, 470, 170, 430, 300])` should return `147.323`.
`standardDeviation([600, 470, 170, 430, 300])` debe devolver `147.323`.
```js
assert.equal(standardDeviation([600, 470, 170, 430, 300]), 147.323);
```
`standardDeviation([75, 83, 96, 100, 121, 125])` should return `18.239`.
`standardDeviation([75, 83, 96, 100, 121, 125])` debe devolver `18.239`.
```js
assert.equal(standardDeviation([75, 83, 96, 100, 121, 125]), 18.239);
```
`standardDeviation([23, 37, 45, 49, 56, 63, 63, 70, 72, 82])` should return `16.87`.
`standardDeviation([23, 37, 45, 49, 56, 63, 63, 70, 72, 82])` debe devolver `16.87`.
```js
assert.equal(
@ -51,7 +51,7 @@ assert.equal(
);
```
`standardDeviation([271, 354, 296, 301, 333, 326, 285, 298, 327, 316, 287, 314])` should return `22.631`.
`standardDeviation([271, 354, 296, 301, 333, 326, 285, 298, 327, 316, 287, 314])` debe devolver `22.631`.
```js
assert.equal(

View File

@ -1,6 +1,6 @@
---
id: 5a23c84252665b21eecc802a
title: Stream Merge
title: Fusión de Flujo
challengeType: 5
forumTopicId: 302326
dashedName: stream-merge
@ -8,17 +8,17 @@ dashedName: stream-merge
# --description--
Write a function that takes multiple sorted arrays of items, and returns one array of sorted items.
Escribe una función que tome múltiples arreglos ordenados de elementos, y devuelva un arreglo de elementos ordenados.
# --hints--
`mergeLists` should be a function.
`mergeLists` debe ser una funcn.
```js
assert(typeof mergeLists == 'function');
```
`mergeLists([[1, 3, 5, 9, 10], [2, 4, 6, 7, 8]])` should return an array.
`mergeLists([[1, 3, 5, 9, 10], [2, 4, 6, 7, 8]])` debe retornar un arreglo.
```js
assert(
@ -31,7 +31,7 @@ assert(
);
```
`mergeLists([[1, 3, 5, 9, 10], [2, 4, 6, 7, 8]])` should return `[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]`.
`mergeLists([[1, 3, 5, 9, 10], [2, 4, 6, 7, 8]])` debe retornar `[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]`.
```js
assert.deepEqual(
@ -43,7 +43,7 @@ assert.deepEqual(
);
```
`mergeLists([[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]])` should return `[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]`.
`mergeLists([[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]])` debe retornar `[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]`.
```js
assert.deepEqual(
@ -56,7 +56,7 @@ assert.deepEqual(
);
```
`mergeLists([[1, 3, 9, 14, 15, 17, 28], [7, 8, 14, 14, 23, 26, 28, 29, 30], [9, 23, 25, 29]])` should return `[1, 3, 7, 8, 9, 9, 14, 14, 14, 15, 17, 23, 23, 25, 26, 28, 28, 29, 29, 30]`.
`mergeLists([[1, 3, 9, 14, 15, 17, 28], [7, 8, 14, 14, 23, 26, 28, 29, 30], [9, 23, 25, 29]])` debe retornar `[1, 3, 7, 8, 9, 9, 14, 14, 14, 15, 17, 23, 23, 25, 26, 28, 28, 29, 29, 30]`.
```js
assert.deepEqual(
@ -69,7 +69,7 @@ assert.deepEqual(
);
```
`mergeLists([[3, 14, 15], [2, 17, 18], [], [2, 3, 5, 7]])` should return `[2, 2, 3, 3, 5, 7, 14, 15, 17, 18]`.
`mergeLists([[3, 14, 15], [2, 17, 18], [], [2, 3, 5, 7]])` debe retornar `[2, 2, 3, 3, 5, 7, 14, 15, 17, 18]`.
```js
assert.deepEqual(mergeLists([[3, 14, 15], [2, 17, 18], [], [2, 3, 5, 7]]), [
@ -86,7 +86,7 @@ assert.deepEqual(mergeLists([[3, 14, 15], [2, 17, 18], [], [2, 3, 5, 7]]), [
]);
```
`mergeLists([[1, 19, 1999], [17, 33, 2999, 3000], [8, 500, 3999]])` should return `[1, 8, 17, 19, 33, 500, 1999, 2999, 3000, 3999]`.
`mergeLists([[1, 19, 1999], [17, 33, 2999, 3000], [8, 500, 3999]])` debe retornar `[1, 8, 17, 19, 33, 500, 1999, 2999, 3000, 3999]`.
```js
assert.deepEqual(