diff --git a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-77-prime-summations.md b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-77-prime-summations.md
index fade056d03..bd26cc3c69 100644
--- a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-77-prime-summations.md
+++ b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-77-prime-summations.md
@@ -15,23 +15,41 @@ It is possible to write ten as the sum of primes in exactly five different ways:
5 + 5
5 + 3 + 2
3 + 3 + 2 + 2
- 2 + 2 + 2 + 2 + 2
+ 2 + 2 + 2 + 2 + 2
-What is the first value which can be written as the sum of primes in over five thousand different ways?
+What is the first value which can be written as the sum of primes in over `n` ways?
# --hints--
-`primeSummations()` should return a number.
+`primeSummations(5)` should return a number.
```js
-assert(typeof primeSummations() === 'number');
+assert(typeof primeSummations(5) === 'number');
```
-`primeSummations()` should return 71.
+`primeSummations(5)` should return `11`.
```js
-assert.strictEqual(primeSummations(), 71);
+assert.strictEqual(primeSummations(5), 11);
+```
+
+`primeSummations(100)` should return `31`.
+
+```js
+assert.strictEqual(primeSummations(100), 31);
+```
+
+`primeSummations(1000)` should return `53`.
+
+```js
+assert.strictEqual(primeSummations(1000), 53);
+```
+
+`primeSummations(5000)` should return `71`.
+
+```js
+assert.strictEqual(primeSummations(5000), 71);
```
# --seed--
@@ -39,16 +57,54 @@ assert.strictEqual(primeSummations(), 71);
## --seed-contents--
```js
-function primeSummations() {
+function primeSummations(n) {
return true;
}
-primeSummations();
+primeSummations(5);
```
# --solutions--
```js
-// solution required
+function primeSummations(n) {
+ function getSievePrimes(max) {
+ const primesMap = new Array(max).fill(true);
+ primesMap[0] = false;
+ primesMap[1] = false;
+ const primes = [];
+
+ for (let i = 2; i < max; i += 2) {
+ if (primesMap[i]) {
+ primes.push(i);
+ for (let j = i * i; j < max; j += i) {
+ primesMap[j] = false;
+ }
+ }
+ if (i === 2) {
+ i = 1;
+ }
+ }
+ return primes;
+ }
+
+ const MAX_NUMBER = 100;
+ const primes = getSievePrimes(MAX_NUMBER);
+
+ for (let curNumber = 2; curNumber < MAX_NUMBER; curNumber++) {
+ const combinations = new Array(curNumber + 1).fill(0);
+ combinations[0] = 1;
+ for (let i = 0; i < primes.length; i++) {
+ for (let j = primes[i]; j <= curNumber; j++) {
+ combinations[j] += combinations[j - primes[i]];
+ }
+ }
+ if (combinations[curNumber] > n) {
+ return curNumber;
+ }
+ }
+
+ return false;
+}
```