diff --git a/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-136-singleton-difference.md b/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-136-singleton-difference.md index 34fda8a4ee..070bfdee09 100644 --- a/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-136-singleton-difference.md +++ b/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-136-singleton-difference.md @@ -1,6 +1,6 @@ --- id: 5900f3f51000cf542c50ff07 -title: 'Problem 136: Singleton difference' +title: 'Problema 136: Diferenças de solitários' challengeType: 5 forumTopicId: 301764 dashedName: problem-136-singleton-difference @@ -8,20 +8,20 @@ dashedName: problem-136-singleton-difference # --description-- -The positive integers, x, y, and z, are consecutive terms of an arithmetic progression. Given that n is a positive integer, the equation, x2 − y2 − z2 = n, has exactly one solution when n = 20: +Os números inteiros positivos, $x$, $y$e $z$, são termos consecutivos de uma progressão aritmética. Dado que $n$ é um número inteiro positivo, a equação, $x^2 - y^2 - z^2 = n$, tem exatamente uma solução quando $n = 20$: -132 − 102 − 72 = 20 +$$13^2 − 10^2 − 7^2 = 20$$ -In fact there are twenty-five values of n below one hundred for which the equation has a unique solution. +De fato, há vinte e cinco valores de $n$ abaixo de cem para os quais a equação tem uma solução única. -How many values of n less than fifty million have exactly one solution? +Quantos valores de $n$ abaixo de cinquenta milhões têm exatamente uma solução? # --hints-- -`euler136()` should return 2544559. +`singletonDifference()` deve retornar `2544559`. ```js -assert.strictEqual(euler136(), 2544559); +assert.strictEqual(singletonDifference(), 2544559); ``` # --seed-- @@ -29,12 +29,12 @@ assert.strictEqual(euler136(), 2544559); ## --seed-contents-- ```js -function euler136() { +function singletonDifference() { return true; } -euler136(); +singletonDifference(); ``` # --solutions-- diff --git a/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-137-fibonacci-golden-nuggets.md b/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-137-fibonacci-golden-nuggets.md index 2863f66aa1..cf0f9558d5 100644 --- a/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-137-fibonacci-golden-nuggets.md +++ b/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-137-fibonacci-golden-nuggets.md @@ -1,6 +1,6 @@ --- id: 5900f3f51000cf542c50ff08 -title: 'Problem 137: Fibonacci golden nuggets' +title: 'Problema 137: Pepitas de ouro de Fibonacci' challengeType: 5 forumTopicId: 301765 dashedName: problem-137-fibonacci-golden-nuggets @@ -8,30 +8,34 @@ dashedName: problem-137-fibonacci-golden-nuggets # --description-- -Consider the infinite polynomial series AF(x) = xF1 + x2F2 + x3F3 + ..., where Fk is the kth term in the Fibonacci sequence: 1, 1, 2, 3, 5, 8, ... ; that is, Fk = Fk−1 + Fk−2, F1 = 1 and F2 = 1. +Considere a série polinomial infinita $A_{F}(x) = xF_1 + x^2F_2 + x^3F_3 + \ldots$, onde $F_k$ é o $k$º termo na sequência de Fibonacci: $1, 1, 2, 3, 5, 8, \ldots$; ou seja, $F_k = F_{k − 1} + F_{k − 2}, F_1 = 1$ e $F_2 = 1$. -For this problem we shall be interested in values of x for which AF(x) is a positive integer. +Para este problema, estaremos interessados em valores de $x$ para os quais $A_{F}(x)$ é um número inteiro positivo. -Surprisingly AF(1/2) +Surpreendentemente, -= +$$\begin{align} A_F(\frac{1}{2}) & = (\frac{1}{2}) × 1 + {(\frac{1}{2})}^2 × 1 + {(\frac{1}{2})}^3 × 2 + {(\frac{1}{2})}^4 × 3 + {(\frac{1}{2})}^5 × 5 + \cdots \\\\ & = \frac{1}{2} + \frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \frac{5}{32} + \cdots \\\\ & = 2 \end{align}$$ -(1/2).1 + (1/2)2.1 + (1/2)3.2 + (1/2)4.3 + (1/2)5.5 + ... +Os valores correspondentes de $x$ para os primeiros cinco números naturais são mostrados abaixo. -= 1/2 + 1/4 + 2/8 + 3/16 + 5/32 + ... +| $x$ | $A_F(x)$ | +| --------------------------- | -------- | +| $\sqrt{2} − 1$ | $1$ | +| $\frac{1}{2}$ | $2$ | +| $\frac{\sqrt{13} − 2}{3}$ | $3$ | +| $\frac{\sqrt{89} − 5}{8}$ | $4$ | +| $\frac{\sqrt{34} − 3}{5}$ | $5$ | -= 2 The corresponding values of x for the first five natural numbers are shown below. +Vamos chamar $A_F(x)$ de pepita de ouro se $x$ for racional, porque eles se tornam cada vez mais raros (por exemplo, a 10ª pepita de ouro é 74049690). -xAF(x) √2−11 1/22 (√13−2)/33 (√89−5)/84 (√34−3)/55 - -We shall call AF(x) a golden nugget if x is rational, because they become increasingly rarer; for example, the 10th golden nugget is 74049690. Find the 15th golden nugget. +Encontre a 15ª pepita dourada. # --hints-- -`euler137()` should return 1120149658760. +`goldenNugget()` deve retornar `1120149658760`. ```js -assert.strictEqual(euler137(), 1120149658760); +assert.strictEqual(goldenNugget(), 1120149658760); ``` # --seed-- @@ -39,12 +43,12 @@ assert.strictEqual(euler137(), 1120149658760); ## --seed-contents-- ```js -function euler137() { +function goldenNugget() { return true; } -euler137(); +goldenNugget(); ``` # --solutions-- diff --git a/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-138-special-isosceles-triangles.md b/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-138-special-isosceles-triangles.md index 5675e1f938..6af82710da 100644 --- a/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-138-special-isosceles-triangles.md +++ b/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-138-special-isosceles-triangles.md @@ -1,6 +1,6 @@ --- id: 5900f3f61000cf542c50ff09 -title: 'Problem 138: Special isosceles triangles' +title: 'Problema 138: Triângulos isósceles especiais' challengeType: 5 forumTopicId: 301766 dashedName: problem-138-special-isosceles-triangles @@ -8,16 +8,22 @@ dashedName: problem-138-special-isosceles-triangles # --description-- -Consider the isosceles triangle with base length, b = 16, and legs, L = 17. +Considere o triângulo isósceles com o comprimento de base, $b = 16$, e os lados iguais, $L = 17$. -By using the Pythagorean theorem it can be seen that the height of the triangle, h = √(172 − 82) = 15, which is one less than the base length. With b = 272 and L = 305, we get h = 273, which is one more than the base length, and this is the second smallest isosceles triangle with the property that h = b ± 1. Find ∑ L for the twelve smallest isosceles triangles for which h = b ± 1 and b, L are positive integers. +triângulo isósceles com lados chamados de L - dois lados com o mesmo comprimento e a base do triângulo chamada de b. A altura do triângulo é chamada de h e vai da base do triângulo ao ângulo entre os lados L + +Usando o teorema de Pitágoras, pode ser visto que a altura do triângulo, $h = \sqrt{{17}^2 - 8^2} = 15$, que é uma unidade menor que o comprimento da base. + +Com $b = 272$ e $L = 305$, obtemos $h = 273$, que é um a mais do que o comprimento da base, e este é o segundo menor triângulo isósceles com a propriedade $h = b ± 1$. + +Encontre $\sum{L}$ para os doze menores triângulos isósceles para os quais $h = b ± 1$ e $b$, $L$ são números inteiros positivos. # --hints-- -`euler138()` should return 1118049290473932. +`isoscelesTriangles()` deve retornar `1118049290473932`. ```js -assert.strictEqual(euler138(), 1118049290473932); +assert.strictEqual(isoscelesTriangles(), 1118049290473932); ``` # --seed-- @@ -25,12 +31,12 @@ assert.strictEqual(euler138(), 1118049290473932); ## --seed-contents-- ```js -function euler138() { +function isoscelesTriangles() { return true; } -euler138(); +isoscelesTriangles(); ``` # --solutions-- diff --git a/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-139-pythagorean-tiles.md b/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-139-pythagorean-tiles.md index 800c0ccbab..c97bce63ec 100644 --- a/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-139-pythagorean-tiles.md +++ b/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-139-pythagorean-tiles.md @@ -1,6 +1,6 @@ --- id: 5900f3f71000cf542c50ff0a -title: 'Problem 139: Pythagorean tiles' +title: 'Problema 139: Blocos de Pitágoras' challengeType: 5 forumTopicId: 301767 dashedName: problem-139-pythagorean-tiles @@ -8,18 +8,22 @@ dashedName: problem-139-pythagorean-tiles # --description-- -Let (a, b, c) represent the three sides of a right angle triangle with integral length sides. It is possible to place four such triangles together to form a square with length c. +Considere que (a, b, c) representam os três lados de um triângulo retângulo com lados cujo comprimento são números inteiros. É possível posicionar quatro desses triângulos juntos para formar um quadrado com comprimento c. -For example, (3, 4, 5) triangles can be placed together to form a 5 by 5 square with a 1 by 1 hole in the middle and it can be seen that the 5 by 5 square can be tiled with twenty-five 1 by 1 squares. +Por exemplo, triângulos de lados (3, 4, 5) podem ser colocados juntos para formar um quadrado de 5 por 5 com um orifício de 1 por 1 no meio. Também pode-se ver que o quadrado de 5 por 5 pode ser preenchido com vinte e cinco blocos quadrados de 1 por 1. -However, if (5, 12, 13) triangles were used then the hole would measure 7 by 7 and these could not be used to tile the 13 by 13 square. Given that the perimeter of the right triangle is less than one-hundred million, how many Pythagorean triangles would allow such a tiling to take place? +dois quadrados de 5 por 5: no primeiro, quatro triângulos de medidas 3x4x5 são dispostos de modo a criar um orifício de 1x1 no meio; no segundo, há vinte e cinco quadrados de 1x1 + +No entanto, se os triângulos de (5, 12, 13) fossem usados, o orifício mediria 7 por 7. Esses quadrados de 7 por 7 não poderiam ser usados para preencher o quadrado de 13 por 13. + +Dado que o perímetro do triângulo retângulo é inferior a cem milhões, quantos triângulos trigonométricos pitagóricos permitiriam que tal preenchimento acontecesse? # --hints-- -`euler139()` should return 10057761. +`pythagoreanTiles()` deve retornar `10057761`. ```js -assert.strictEqual(euler139(), 10057761); +assert.strictEqual(pythagoreanTiles(), 10057761); ``` # --seed-- @@ -27,12 +31,12 @@ assert.strictEqual(euler139(), 10057761); ## --seed-contents-- ```js -function euler139() { +function pythagoreanTiles() { return true; } -euler139(); +pythagoreanTiles(); ``` # --solutions-- diff --git a/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-140-modified-fibonacci-golden-nuggets.md b/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-140-modified-fibonacci-golden-nuggets.md index 01664be7ae..c027721b5a 100644 --- a/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-140-modified-fibonacci-golden-nuggets.md +++ b/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-140-modified-fibonacci-golden-nuggets.md @@ -1,6 +1,6 @@ --- id: 5900f3fa1000cf542c50ff0c -title: 'Problem 140: Modified Fibonacci golden nuggets' +title: 'Problema 140: Pepitas de ouro de Fibonacci modificado' challengeType: 5 forumTopicId: 301769 dashedName: problem-140-modified-fibonacci-golden-nuggets @@ -8,22 +8,28 @@ dashedName: problem-140-modified-fibonacci-golden-nuggets # --description-- -Consider the infinite polynomial series AG(x) = xG1 + x2G2 + x3G3 + ..., where Gk is the kth term of the second order recurrence relation Gk = Gk−1 + Gk−2, G1 = 1 and G2 = 4; that is, 1, 4, 5, 9, 14, 23, ... . +Considere a série polinomial infinita $A_G(x) = xG_1 + x^2G_2 + x^3G_3 + \cdots$, onde $G_k$ é o $k$º termo da relação de recorrência de segunda ordem $G_k = G_{k − 1} + G_{k − 2}, G_1 = 1$ e $G_2 = 4$; ou seja, $1, 4, 5, 9, 14, 23, \ldots$. -For this problem we shall be concerned with values of x for which AG(x) is a positive integer. +Para este problema, estaremos interessados nos valores de $x$ para os quais $A_G(x)$ é um número inteiro positivo. -The corresponding values of x for the first five natural numbers are shown below. +Os valores correspondentes de $x$ para os primeiros cinco números naturais são mostrados abaixo. -xAG(x) (√5−1)/41 2/52 (√22−2)/63 (√137−5)/144 1/25 +| $x$ | $A_G(x)$ | +| ----------------------------- | -------- | +| $\frac{\sqrt{5} − 1}{4}$ | $1$ | +| $\frac{2}{5}$ | $2$ | +| $\frac{\sqrt{22} − 2}{6}$ | $3$ | +| $\frac{\sqrt{137} − 5}{14}$ | $4$ | +| $\frac{1}{2}$ | $5$ | -We shall call AG(x) a golden nugget if x is rational, because they become increasingly rarer; for example, the 20th golden nugget is 211345365. Find the sum of the first thirty golden nuggets. +Vamos chamar $A_G(x)$ de pepita de ouro se $x$ for racional, porque eles se tornam cada vez mais raros (por exemplo, a 20ª pepita de ouro é 211345365). Encontre a soma das primeiras trinta pepitas douradas. # --hints-- -`euler140()` should return 5673835352990. +`modifiedGoldenNuggets()` deve retornar `5673835352990` ```js -assert.strictEqual(euler140(), 5673835352990); +assert.strictEqual(modifiedGoldenNuggets(), 5673835352990); ``` # --seed-- @@ -31,12 +37,12 @@ assert.strictEqual(euler140(), 5673835352990); ## --seed-contents-- ```js -function euler140() { +function modifiedGoldenNuggets() { return true; } -euler140(); +modifiedGoldenNuggets(); ``` # --solutions-- diff --git a/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-148-exploring-pascals-triangle.md b/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-148-exploring-pascals-triangle.md index 13babe893b..b0bf0827f0 100644 --- a/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-148-exploring-pascals-triangle.md +++ b/curriculum/challenges/portuguese/10-coding-interview-prep/project-euler/problem-148-exploring-pascals-triangle.md @@ -1,6 +1,6 @@ --- id: 5900f4021000cf542c50ff14 -title: 'Problem 148: Exploring Pascal''s triangle' +title: 'Problema 148: Explorando o triângulo de Pascal' challengeType: 5 forumTopicId: 301777 dashedName: problem-148-exploring-pascals-triangle @@ -8,9 +8,9 @@ dashedName: problem-148-exploring-pascals-triangle # --description-- -We can easily verify that none of the entries in the first seven rows of Pascal's triangle are divisible by 7: +Podemos facilmente verificar que nenhuma das entradas das primeiras sete linhas do triângulo Pascal é divisível por 7: -
+```
             1
           1   1
         1   2   1
@@ -18,20 +18,20 @@ We can easily verify that none of the entries in the first seven rows of Pascal'
     1   4   6   4   1
   1   5   10  10  5   1
 1   6   15  20  15  6   1
-
+``` -However, if we check the first one hundred rows, we will find that only 2361 of the 5050 entries are not divisible by 7. +No entanto, se verificarmos as primeiras cem linhas, descobriremos que apenas 2361 das 5050 entradas não são divisíveis por 7. # --instructions-- -Find the number of entries which are not divisible by 7 in the first one billion (109) rows of Pascal's triangle. +Encontre o número de entradas que não são divisíveis por 7 no primeiro bilhão (${10}^9$) de linhas do triângulo de Pascal. # --hints-- -`euler148()` should return 2129970655314432. +`entriesOfPascalsTriangle()` deve retornar `2129970655314432`. ```js -assert.strictEqual(euler148(), 2129970655314432); +assert.strictEqual(entriesOfPascalsTriangle(), 2129970655314432); ``` # --seed-- @@ -39,12 +39,12 @@ assert.strictEqual(euler148(), 2129970655314432); ## --seed-contents-- ```js -function euler148() { +function entriesOfPascalsTriangle() { return true; } -euler148(); +entriesOfPascalsTriangle(); ``` # --solutions--