fix: converted single to triple backticks11 (#36238)

This commit is contained in:
Randell Dawson
2019-06-20 13:42:13 -07:00
committed by Tom
parent 397014136e
commit 54d303ce1f
75 changed files with 1673 additions and 1430 deletions

View File

@@ -60,44 +60,45 @@ localeTitle: خوارزميات التجميع
في ما يلي مثال تجميع في Python يستخدم " [مجموعة بيانات Iris"](https://www.kaggle.com/uciml/iris)
`import pandas as pd
import numpy as np
iris = pd.read_csv('Iris.csv')
del iris['Id']
del iris['SepalLengthCm']
del iris['SepalWidthCm']
from matplotlib import pyplot as plt
# k is the input parameter set to the number of species
k = len(iris['Species'].unique())
for i in iris['Species'].unique():
# select only the applicable rows
ds = iris[iris['Species'] == i]
# plot the points
plt.plot(ds[['PetalLengthCm']],ds[['PetalWidthCm']],'o')
plt.title("Original Iris by Species")
plt.show()
from sklearn import cluster
del iris['Species']
kmeans = cluster.KMeans(n_clusters=k, n_init=10, max_iter=300, algorithm='auto')
kmeans.fit(iris)
labels = kmeans.labels_
centroids = kmeans.cluster_centers_
for i in range(k):
# select only data observations from the applicable cluster
ds = iris.iloc[np.where(labels==i)]
# plot the data observations
plt.plot(ds['PetalLengthCm'],ds['PetalWidthCm'],'o')
# plot the centroids
lines = plt.plot(centroids[i,0],centroids[i,1],'kx')
# make the centroid x's bigger
plt.setp(lines,ms=15.0)
plt.setp(lines,mew=2.0)
plt.title("Iris by K-Means Clustering")
plt.show()
`
```python
import pandas as pd
import numpy as np
iris = pd.read_csv('Iris.csv')
del iris['Id']
del iris['SepalLengthCm']
del iris['SepalWidthCm']
from matplotlib import pyplot as plt
# k is the input parameter set to the number of species
k = len(iris['Species'].unique())
for i in iris['Species'].unique():
# select only the applicable rows
ds = iris[iris['Species'] == i]
# plot the points
plt.plot(ds[['PetalLengthCm']],ds[['PetalWidthCm']],'o')
plt.title("Original Iris by Species")
plt.show()
from sklearn import cluster
del iris['Species']
kmeans = cluster.KMeans(n_clusters=k, n_init=10, max_iter=300, algorithm='auto')
kmeans.fit(iris)
labels = kmeans.labels_
centroids = kmeans.cluster_centers_
for i in range(k):
# select only data observations from the applicable cluster
ds = iris.iloc[np.where(labels==i)]
# plot the data observations
plt.plot(ds['PetalLengthCm'],ds['PetalWidthCm'],'o')
# plot the centroids
lines = plt.plot(centroids[i,0],centroids[i,1],'kx')
# make the centroid x's bigger
plt.setp(lines,ms=15.0)
plt.setp(lines,mew=2.0)
plt.title("Iris by K-Means Clustering")
plt.show()
```
بما أن نقاط البيانات تنتمي عادة إلى مساحة عالية الأبعاد ، فإن مقياس التشابه غالباً ما يتم تعريفه على أنه مسافة بين متجهين (Euclidean ، Manhathan ، Cosine ، Mahalanobis…)

View File

@@ -10,31 +10,32 @@ localeTitle: الانحدارالخطي
في بايثون:
`#Price of wheat/kg and the average price of bread
wheat_and_bread = [[0.5,5],[0.6,5.5],[0.8,6],[1.1,6.8],[1.4,7]]
def step_gradient(b_current, m_current, points, learningRate):
b_gradient = 0
m_gradient = 0
N = float(len(points))
for i in range(0, len(points)):
x = points[i][0]
y = points[i][1]
b_gradient += -(2/N) * (y - ((m_current * x) + b_current))
m_gradient += -(2/N) * x * (y - ((m_current * x) + b_current))
new_b = b_current - (learningRate * b_gradient)
new_m = m_current - (learningRate * m_gradient)
return [new_b, new_m]
def gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations):
b = starting_b
m = starting_m
for i in range(num_iterations):
b, m = step_gradient(b, m, points, learning_rate)
return [b, m]
gradient_descent_runner(wheat_and_bread, 1, 1, 0.01, 100)
`
```py
#Price of wheat/kg and the average price of bread
wheat_and_bread = [[0.5,5],[0.6,5.5],[0.8,6],[1.1,6.8],[1.4,7]]
def step_gradient(b_current, m_current, points, learningRate):
b_gradient = 0
m_gradient = 0
N = float(len(points))
for i in range(0, len(points)):
x = points[i][0]
y = points[i][1]
b_gradient += -(2/N) * (y - ((m_current * x) + b_current))
m_gradient += -(2/N) * x * (y - ((m_current * x) + b_current))
new_b = b_current - (learningRate * b_gradient)
new_m = m_current - (learningRate * m_gradient)
return [new_b, new_m]
def gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations):
b = starting_b
m = starting_m
for i in range(num_iterations):
b, m = step_gradient(b, m, points, learning_rate)
return [b, m]
gradient_descent_runner(wheat_and_bread, 1, 1, 0.01, 100)
```
المثال رمز من [هذه المقالة](http://blog.floydhub.com/coding-the-history-of-deep-learning/) . كما يشرح نزول التدرج والمفاهيم الأساسية الأخرى للتعلم العميق.
@@ -42,23 +43,24 @@ localeTitle: الانحدارالخطي
في بايثون: تطبيق مباشرة باستخدام مكتبة scikit ، مما يجعل من السهل استخدام الانحدار الخطي حتى على مجموعات البيانات الكبيرة.
`import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.linear_model import LinearRegression as lr
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
X = train.iloc[:, 0:4].values
y = train.iloc[:, 4].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
X_train
model = lr()
model.fit(X_train, y_train)
print(model.score(X_train,y_train))
y_pred_class = model.predict(X_test)
model.score(X_train,y_train)
print(model.coef_)
print(model.intercept_)
# calculate accuracy
from sklearn import metrics
print(metrics.accuracy_score(y_test, y_pred_class))
`
```py
import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.linear_model import LinearRegression as lr
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
X = train.iloc[:, 0:4].values
y = train.iloc[:, 4].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
X_train
model = lr()
model.fit(X_train, y_train)
print(model.score(X_train,y_train))
y_pred_class = model.predict(X_test)
model.score(X_train,y_train)
print(model.coef_)
print(model.intercept_)
# calculate accuracy
from sklearn import metrics
print(metrics.accuracy_score(y_test, y_pred_class))
```