fix: converted single to triple backticks11 (#36238)
This commit is contained in:
		| @@ -60,44 +60,45 @@ localeTitle: خوارزميات التجميع | ||||
|  | ||||
| في ما يلي مثال تجميع في Python يستخدم " [مجموعة بيانات Iris"](https://www.kaggle.com/uciml/iris) | ||||
|  | ||||
|  `import pandas as pd  | ||||
|  import numpy as np  | ||||
|  iris = pd.read_csv('Iris.csv')  | ||||
|  del iris['Id']  | ||||
|  del iris['SepalLengthCm']  | ||||
|  del iris['SepalWidthCm']  | ||||
|   | ||||
|  from matplotlib import pyplot as plt  | ||||
|  # k is the input parameter set to the number of species  | ||||
|  k = len(iris['Species'].unique())  | ||||
|  for i in iris['Species'].unique():  | ||||
|     # select only the applicable rows  | ||||
|     ds = iris[iris['Species'] == i]  | ||||
|     # plot the points  | ||||
|     plt.plot(ds[['PetalLengthCm']],ds[['PetalWidthCm']],'o')  | ||||
|  plt.title("Original Iris by Species")  | ||||
|  plt.show()  | ||||
|   | ||||
|  from sklearn import cluster  | ||||
|  del iris['Species']  | ||||
|  kmeans = cluster.KMeans(n_clusters=k, n_init=10, max_iter=300, algorithm='auto')  | ||||
|  kmeans.fit(iris)  | ||||
|  labels = kmeans.labels_  | ||||
|  centroids = kmeans.cluster_centers_  | ||||
|   | ||||
|  for i in range(k):  | ||||
|     # select only data observations from the applicable cluster  | ||||
|     ds = iris.iloc[np.where(labels==i)]  | ||||
|     # plot the data observations  | ||||
|     plt.plot(ds['PetalLengthCm'],ds['PetalWidthCm'],'o')  | ||||
|     # plot the centroids  | ||||
|     lines = plt.plot(centroids[i,0],centroids[i,1],'kx')  | ||||
|     # make the centroid x's bigger  | ||||
|     plt.setp(lines,ms=15.0)  | ||||
|     plt.setp(lines,mew=2.0)  | ||||
|  plt.title("Iris by K-Means Clustering")  | ||||
|  plt.show()  | ||||
| `  | ||||
| ```python | ||||
| import pandas as pd | ||||
| import numpy as np | ||||
| iris = pd.read_csv('Iris.csv') | ||||
| del iris['Id'] | ||||
| del iris['SepalLengthCm'] | ||||
| del iris['SepalWidthCm'] | ||||
|  | ||||
| from matplotlib import pyplot as plt | ||||
| # k is the input parameter set to the number of species | ||||
| k = len(iris['Species'].unique()) | ||||
| for i in iris['Species'].unique(): | ||||
|     # select only the applicable rows | ||||
|     ds = iris[iris['Species'] == i] | ||||
|     # plot the points | ||||
|     plt.plot(ds[['PetalLengthCm']],ds[['PetalWidthCm']],'o') | ||||
| plt.title("Original Iris by Species") | ||||
| plt.show() | ||||
|  | ||||
| from sklearn import cluster | ||||
| del iris['Species'] | ||||
| kmeans = cluster.KMeans(n_clusters=k, n_init=10, max_iter=300, algorithm='auto') | ||||
| kmeans.fit(iris) | ||||
| labels = kmeans.labels_ | ||||
| centroids = kmeans.cluster_centers_ | ||||
|  | ||||
| for i in range(k): | ||||
|     # select only data observations from the applicable cluster | ||||
|     ds = iris.iloc[np.where(labels==i)] | ||||
|     # plot the data observations | ||||
|     plt.plot(ds['PetalLengthCm'],ds['PetalWidthCm'],'o') | ||||
|     # plot the centroids | ||||
|     lines = plt.plot(centroids[i,0],centroids[i,1],'kx') | ||||
|     # make the centroid x's bigger | ||||
|     plt.setp(lines,ms=15.0) | ||||
|     plt.setp(lines,mew=2.0) | ||||
| plt.title("Iris by K-Means Clustering") | ||||
| plt.show() | ||||
| ```  | ||||
|  | ||||
| بما أن نقاط البيانات تنتمي عادة إلى مساحة عالية الأبعاد ، فإن مقياس التشابه غالباً ما يتم تعريفه على أنه مسافة بين متجهين (Euclidean ، Manhathan ، Cosine ، Mahalanobis…) | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user