fix: converted single to triple backticks11 (#36238)

This commit is contained in:
Randell Dawson
2019-06-20 13:42:13 -07:00
committed by Tom
parent 397014136e
commit 54d303ce1f
75 changed files with 1673 additions and 1430 deletions

View File

@@ -10,31 +10,32 @@ localeTitle: الانحدارالخطي
في بايثون:
`#Price of wheat/kg and the average price of bread
wheat_and_bread = [[0.5,5],[0.6,5.5],[0.8,6],[1.1,6.8],[1.4,7]]
def step_gradient(b_current, m_current, points, learningRate):
b_gradient = 0
m_gradient = 0
N = float(len(points))
for i in range(0, len(points)):
x = points[i][0]
y = points[i][1]
b_gradient += -(2/N) * (y - ((m_current * x) + b_current))
m_gradient += -(2/N) * x * (y - ((m_current * x) + b_current))
new_b = b_current - (learningRate * b_gradient)
new_m = m_current - (learningRate * m_gradient)
return [new_b, new_m]
def gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations):
b = starting_b
m = starting_m
for i in range(num_iterations):
b, m = step_gradient(b, m, points, learning_rate)
return [b, m]
gradient_descent_runner(wheat_and_bread, 1, 1, 0.01, 100)
`
```py
#Price of wheat/kg and the average price of bread
wheat_and_bread = [[0.5,5],[0.6,5.5],[0.8,6],[1.1,6.8],[1.4,7]]
def step_gradient(b_current, m_current, points, learningRate):
b_gradient = 0
m_gradient = 0
N = float(len(points))
for i in range(0, len(points)):
x = points[i][0]
y = points[i][1]
b_gradient += -(2/N) * (y - ((m_current * x) + b_current))
m_gradient += -(2/N) * x * (y - ((m_current * x) + b_current))
new_b = b_current - (learningRate * b_gradient)
new_m = m_current - (learningRate * m_gradient)
return [new_b, new_m]
def gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations):
b = starting_b
m = starting_m
for i in range(num_iterations):
b, m = step_gradient(b, m, points, learning_rate)
return [b, m]
gradient_descent_runner(wheat_and_bread, 1, 1, 0.01, 100)
```
المثال رمز من [هذه المقالة](http://blog.floydhub.com/coding-the-history-of-deep-learning/) . كما يشرح نزول التدرج والمفاهيم الأساسية الأخرى للتعلم العميق.
@@ -42,23 +43,24 @@ localeTitle: الانحدارالخطي
في بايثون: تطبيق مباشرة باستخدام مكتبة scikit ، مما يجعل من السهل استخدام الانحدار الخطي حتى على مجموعات البيانات الكبيرة.
`import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.linear_model import LinearRegression as lr
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
X = train.iloc[:, 0:4].values
y = train.iloc[:, 4].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
X_train
model = lr()
model.fit(X_train, y_train)
print(model.score(X_train,y_train))
y_pred_class = model.predict(X_test)
model.score(X_train,y_train)
print(model.coef_)
print(model.intercept_)
# calculate accuracy
from sklearn import metrics
print(metrics.accuracy_score(y_test, y_pred_class))
`
```py
import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.linear_model import LinearRegression as lr
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
X = train.iloc[:, 0:4].values
y = train.iloc[:, 4].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
X_train
model = lr()
model.fit(X_train, y_train)
print(model.score(X_train,y_train))
y_pred_class = model.predict(X_test)
model.score(X_train,y_train)
print(model.coef_)
print(model.intercept_)
# calculate accuracy
from sklearn import metrics
print(metrics.accuracy_score(y_test, y_pred_class))
```