fix: converted single to triple backticks11 (#36238)
This commit is contained in:
@@ -10,31 +10,32 @@ localeTitle: الانحدارالخطي
|
||||
|
||||
في بايثون:
|
||||
|
||||
`#Price of wheat/kg and the average price of bread
|
||||
wheat_and_bread = [[0.5,5],[0.6,5.5],[0.8,6],[1.1,6.8],[1.4,7]]
|
||||
|
||||
def step_gradient(b_current, m_current, points, learningRate):
|
||||
b_gradient = 0
|
||||
m_gradient = 0
|
||||
N = float(len(points))
|
||||
for i in range(0, len(points)):
|
||||
x = points[i][0]
|
||||
y = points[i][1]
|
||||
b_gradient += -(2/N) * (y - ((m_current * x) + b_current))
|
||||
m_gradient += -(2/N) * x * (y - ((m_current * x) + b_current))
|
||||
new_b = b_current - (learningRate * b_gradient)
|
||||
new_m = m_current - (learningRate * m_gradient)
|
||||
return [new_b, new_m]
|
||||
|
||||
def gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations):
|
||||
b = starting_b
|
||||
m = starting_m
|
||||
for i in range(num_iterations):
|
||||
b, m = step_gradient(b, m, points, learning_rate)
|
||||
return [b, m]
|
||||
|
||||
gradient_descent_runner(wheat_and_bread, 1, 1, 0.01, 100)
|
||||
`
|
||||
```py
|
||||
#Price of wheat/kg and the average price of bread
|
||||
wheat_and_bread = [[0.5,5],[0.6,5.5],[0.8,6],[1.1,6.8],[1.4,7]]
|
||||
|
||||
def step_gradient(b_current, m_current, points, learningRate):
|
||||
b_gradient = 0
|
||||
m_gradient = 0
|
||||
N = float(len(points))
|
||||
for i in range(0, len(points)):
|
||||
x = points[i][0]
|
||||
y = points[i][1]
|
||||
b_gradient += -(2/N) * (y - ((m_current * x) + b_current))
|
||||
m_gradient += -(2/N) * x * (y - ((m_current * x) + b_current))
|
||||
new_b = b_current - (learningRate * b_gradient)
|
||||
new_m = m_current - (learningRate * m_gradient)
|
||||
return [new_b, new_m]
|
||||
|
||||
def gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations):
|
||||
b = starting_b
|
||||
m = starting_m
|
||||
for i in range(num_iterations):
|
||||
b, m = step_gradient(b, m, points, learning_rate)
|
||||
return [b, m]
|
||||
|
||||
gradient_descent_runner(wheat_and_bread, 1, 1, 0.01, 100)
|
||||
```
|
||||
|
||||
المثال رمز من [هذه المقالة](http://blog.floydhub.com/coding-the-history-of-deep-learning/) . كما يشرح نزول التدرج والمفاهيم الأساسية الأخرى للتعلم العميق.
|
||||
|
||||
@@ -42,23 +43,24 @@ localeTitle: الانحدارالخطي
|
||||
|
||||
في بايثون: تطبيق مباشرة باستخدام مكتبة scikit ، مما يجعل من السهل استخدام الانحدار الخطي حتى على مجموعات البيانات الكبيرة.
|
||||
|
||||
`import pandas as pd
|
||||
from sklearn.cross_validation import train_test_split
|
||||
from sklearn.linear_model import LinearRegression as lr
|
||||
train = pd.read_csv('../input/train.csv')
|
||||
test = pd.read_csv('../input/test.csv')
|
||||
X = train.iloc[:, 0:4].values
|
||||
y = train.iloc[:, 4].values
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
|
||||
X_train
|
||||
model = lr()
|
||||
model.fit(X_train, y_train)
|
||||
print(model.score(X_train,y_train))
|
||||
y_pred_class = model.predict(X_test)
|
||||
model.score(X_train,y_train)
|
||||
print(model.coef_)
|
||||
print(model.intercept_)
|
||||
# calculate accuracy
|
||||
from sklearn import metrics
|
||||
print(metrics.accuracy_score(y_test, y_pred_class))
|
||||
`
|
||||
```py
|
||||
import pandas as pd
|
||||
from sklearn.cross_validation import train_test_split
|
||||
from sklearn.linear_model import LinearRegression as lr
|
||||
train = pd.read_csv('../input/train.csv')
|
||||
test = pd.read_csv('../input/test.csv')
|
||||
X = train.iloc[:, 0:4].values
|
||||
y = train.iloc[:, 4].values
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
|
||||
X_train
|
||||
model = lr()
|
||||
model.fit(X_train, y_train)
|
||||
print(model.score(X_train,y_train))
|
||||
y_pred_class = model.predict(X_test)
|
||||
model.score(X_train,y_train)
|
||||
print(model.coef_)
|
||||
print(model.intercept_)
|
||||
# calculate accuracy
|
||||
from sklearn import metrics
|
||||
print(metrics.accuracy_score(y_test, y_pred_class))
|
||||
```
|
||||
Reference in New Issue
Block a user