From 57238ccdc9c4c84e336aed3195218d16d6cdbd5c Mon Sep 17 00:00:00 2001
From: gikf <60067306+gikf@users.noreply.github.com>
Date: Tue, 4 May 2021 07:42:33 +0200
Subject: [PATCH] fix(curriculum): rework Project Euler 69 (#41974)
* fix: rework challenge to use argument in function
* fix: use mathjax for consistent phi letter
* fix: add solution
* fix: re-align table formatting
---
.../problem-69-totient-maximum.md | 88 ++++++++++++++-----
1 file changed, 67 insertions(+), 21 deletions(-)
diff --git a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-69-totient-maximum.md b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-69-totient-maximum.md
index 4df996e8ab..2e538e324d 100644
--- a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-69-totient-maximum.md
+++ b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-69-totient-maximum.md
@@ -8,40 +8,58 @@ dashedName: problem-69-totient-maximum
# --description--
-Euler's Totient function, φ(`n`) \[sometimes called the phi function], is used to determine the number of numbers less than `n` which are relatively prime to `n`. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9)=6.
+Euler's Totient function, ${\phi}(n)$ (sometimes called the phi function), is used to determine the number of numbers less than `n` which are relatively prime to `n`. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, ${\phi}(9) = 6$.
-| n | Relatively Prime | φ(n) | n/φ(n) |
-| ------------ | ---------------- | --------------- | ---------------------------- |
-| 2 | 1 | 1 | 2 |
-| 3 | 1,2 | 2 | 1.5 |
-| 4 | 1,3 | 2 | 2 |
-| 5 | 1,2,3,4 | 4 | 1.25 |
-| 6 | 1,5 | 2 | 3 |
-| 7 | 1,2,3,4,5,6 | 6 | 1.1666... |
-| 8 | 1,3,5,7 | 4 | 2 |
-| 9 | 1,2,4,5,7,8 | 6 | 1.5 |
-| 10 | 1,3,7,9 | 4 | 2.5 |
+| $n$ | $\text{Relatively Prime}$ | $\displaystyle{\phi}(n)$ | $\displaystyle\frac{n}{{\phi}(n)}$ |
+| --- | ------------------------- | ------------------------ | ---------------------------------- |
+| 2 | 1 | 1 | 2 |
+| 3 | 1,2 | 2 | 1.5 |
+| 4 | 1,3 | 2 | 2 |
+| 5 | 1,2,3,4 | 4 | 1.25 |
+| 6 | 1,5 | 2 | 3 |
+| 7 | 1,2,3,4,5,6 | 6 | 1.1666... |
+| 8 | 1,3,5,7 | 4 | 2 |
+| 9 | 1,2,4,5,7,8 | 6 | 1.5 |
+| 10 | 1,3,7,9 | 4 | 2.5 |
-It can be seen that `n`=6 produces a maximum `n`/φ(`n`) for `n` ≤ 10.
+It can be seen that `n` = 6 produces a maximum $\displaystyle\frac{n}{{\phi}(n)}$ for `n` ≤ 10.
-Find the value of `n` ≤ 1,000,000 for which n/φ(`n`) is a maximum.
+Find the value of `n` ≤ `limit` for which $\displaystyle\frac{n}{{\phi(n)}}$ is a maximum.
# --hints--
-`totientMaximum()` should return a number.
+`totientMaximum(10)` should return a number.
```js
-assert(typeof totientMaximum() === 'number');
+assert(typeof totientMaximum(10) === 'number');
```
-`totientMaximum()` should return 510510.
+`totientMaximum(10)` should return `6`.
```js
-assert.strictEqual(totientMaximum(), 510510);
+assert.strictEqual(totientMaximum(10), 6);
+```
+
+`totientMaximum(10000)` should return `2310`.
+
+```js
+assert.strictEqual(totientMaximum(10000), 2310);
+```
+
+`totientMaximum(500000)` should return `30030`.
+
+```js
+assert.strictEqual(totientMaximum(500000), 30030);
+```
+
+`totientMaximum(1000000)` should return `510510`.
+
+```js
+assert.strictEqual(totientMaximum(1000000), 510510);
```
# --seed--
@@ -49,16 +67,44 @@ assert.strictEqual(totientMaximum(), 510510);
## --seed-contents--
```js
-function totientMaximum() {
+function totientMaximum(limit) {
return true;
}
-totientMaximum();
+totientMaximum(10);
```
# --solutions--
```js
-// solution required
+function totientMaximum(limit) {
+ function getSievePrimes(max) {
+ const primesMap = new Array(max).fill(true);
+ primesMap[0] = false;
+ primesMap[1] = false;
+ const primes = [];
+ for (let i = 2; i < max; i = i + 2) {
+ if (primesMap[i]) {
+ primes.push(i);
+ for (let j = i * i; j < max; j = j + i) {
+ primesMap[j] = false;
+ }
+ }
+ if (i === 2) {
+ i = 1;
+ }
+ }
+ return primes;
+ }
+
+ const MAX_PRIME = 50;
+ const primes = getSievePrimes(MAX_PRIME);
+ let result = 1;
+
+ for (let i = 0; result * primes[i] < limit; i++) {
+ result *= primes[i];
+ }
+ return result;
+}
```