chore(i18n,learn): processed translations (#44851)
This commit is contained in:
@ -0,0 +1,53 @@
|
||||
---
|
||||
id: 5900f4761000cf542c50ff88
|
||||
title: 'Problem 265: Binary Circles'
|
||||
challengeType: 5
|
||||
forumTopicId: 301914
|
||||
dashedName: problem-265-binary-circles
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
$2^N$ binary digits can be placed in a circle so that all the $N$-digit clockwise subsequences are distinct.
|
||||
|
||||
For $N = 3$, two such circular arrangements are possible, ignoring rotations:
|
||||
|
||||
<img class="img-responsive center-block" alt="two circular arrangements for N = 3" src="https://cdn.freecodecamp.org/curriculum/project-euler/binary-circles.gif" style="background-color: white; padding: 10px;" />
|
||||
|
||||
For the first arrangement, the 3-digit subsequences, in clockwise order, are: 000, 001, 010, 101, 011, 111, 110 and 100.
|
||||
|
||||
Each circular arrangement can be encoded as a number by concatenating the binary digits starting with the subsequence of all zeros as the most significant bits and proceeding clockwise. The two arrangements for $N = 3$ are thus represented as 23 and 29:
|
||||
|
||||
$${00010111}_2 = 23\\\\
|
||||
{00011101}_2 = 29$$
|
||||
|
||||
Calling $S(N)$ the sum of the unique numeric representations, we can see that $S(3) = 23 + 29 = 52$.
|
||||
|
||||
Find $S(5)$.
|
||||
|
||||
# --hints--
|
||||
|
||||
`binaryCircles()` should return `209110240768`.
|
||||
|
||||
```js
|
||||
assert.strictEqual(binaryCircles(), 209110240768);
|
||||
```
|
||||
|
||||
# --seed--
|
||||
|
||||
## --seed-contents--
|
||||
|
||||
```js
|
||||
function binaryCircles() {
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
binaryCircles();
|
||||
```
|
||||
|
||||
# --solutions--
|
||||
|
||||
```js
|
||||
// solution required
|
||||
```
|
Reference in New Issue
Block a user