chore(i18n,learn): processed translations (#44851)
This commit is contained in:
@ -0,0 +1,48 @@
|
||||
---
|
||||
id: 5900f47e1000cf542c50ff90
|
||||
title: 'Problem 273: Sum of Squares'
|
||||
challengeType: 5
|
||||
forumTopicId: 301923
|
||||
dashedName: problem-273-sum-of-squares
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
Consider equations of the form: $a^2 + b^2 = N$, $0 ≤ a ≤ b$, $a$, $b$ and $N$ integer.
|
||||
|
||||
For $N = 65$ there are two solutions:
|
||||
|
||||
$a = 1, b = 8$ and $a = 4, b = 7$.
|
||||
|
||||
We call $S(N)$ the sum of the values of $a$ of all solutions of $a^2 + b^2 = N$, $0 ≤ a ≤ b$, $a$, $b$ and $N$ integer.
|
||||
|
||||
Thus $S(65) = 1 + 4 = 5$.
|
||||
|
||||
Find $\sum S(N)$, for all squarefree $N$ only divisible by primes of the form $4k + 1$ with $4k + 1 < 150$.
|
||||
|
||||
# --hints--
|
||||
|
||||
`sumOfSquares()` should return `2032447591196869000`.
|
||||
|
||||
```js
|
||||
assert.strictEqual(sumOfSquares(), 2032447591196869000);
|
||||
```
|
||||
|
||||
# --seed--
|
||||
|
||||
## --seed-contents--
|
||||
|
||||
```js
|
||||
function sumOfSquares() {
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
sumOfSquares();
|
||||
```
|
||||
|
||||
# --solutions--
|
||||
|
||||
```js
|
||||
// solution required
|
||||
```
|
Reference in New Issue
Block a user