chore(i18n,learn): processed translations (#44851)
This commit is contained in:
@ -0,0 +1,52 @@
|
||||
---
|
||||
id: 5900f4b71000cf542c50ffc9
|
||||
title: 'Problem 330: Euler''s Number'
|
||||
challengeType: 5
|
||||
forumTopicId: 301988
|
||||
dashedName: problem-330-eulers-number
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
An infinite sequence of real numbers $a(n)$ is defined for all integers $n$ as follows:
|
||||
|
||||
$$ a(n) = \begin{cases} 1 & n < 0 \\\\ \displaystyle \sum_{i = 1}^{\infty} \frac{a(n - 1)}{i!} & n \ge 0 \end{cases} $$
|
||||
|
||||
For example,
|
||||
|
||||
$$\begin{align} & a(0) = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots = e − 1 \\\\ & a(1) = \frac{e − 1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots = 2e − 3 \\\\ & a(2) = \frac{2e − 3}{1!} + \frac{e − 1}{2!} + \frac{1}{3!} + \ldots = \frac{7}{2} e − 6 \end{align}$$
|
||||
|
||||
with $e = 2.7182818\ldots$ being Euler's constant.
|
||||
|
||||
It can be shown that $a(n)$ is of the form $\displaystyle\frac{A(n)e + B(n)}{n!}$ for integers $A(n)$ and $B(n)$.
|
||||
|
||||
For example $\displaystyle a(10) = \frac{328161643e − 652694486}{10!}$.
|
||||
|
||||
Find $A({10}^9)$ + $B({10}^9)$ and give your answer $\bmod 77\\,777\\,777$.
|
||||
|
||||
# --hints--
|
||||
|
||||
`eulersNumber()` should return `15955822`.
|
||||
|
||||
```js
|
||||
assert.strictEqual(eulersNumber(), 15955822);
|
||||
```
|
||||
|
||||
# --seed--
|
||||
|
||||
## --seed-contents--
|
||||
|
||||
```js
|
||||
function eulersNumber() {
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
eulersNumber();
|
||||
```
|
||||
|
||||
# --solutions--
|
||||
|
||||
```js
|
||||
// solution required
|
||||
```
|
Reference in New Issue
Block a user