chore(i18n,learn): processed translations (#44851)
This commit is contained in:
@ -0,0 +1,48 @@
|
||||
---
|
||||
id: 5900f4d41000cf542c50ffe7
|
||||
title: 'Problem 360: Scary Sphere'
|
||||
challengeType: 5
|
||||
forumTopicId: 302021
|
||||
dashedName: problem-360-scary-sphere
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
Given two points ($x_1$, $y_1$, $z_1$) and ($x_2$, $y_2$, $z_2$) in three dimensional space, the Manhattan distance between those points is defined as $|x_1 - x_2| + |y_1 - y_2| + |z_1 - z_2|$.
|
||||
|
||||
Let $C(r)$ be a sphere with radius $r$ and center in the origin $O(0, 0, 0)$.
|
||||
|
||||
Let $I(r)$ be the set of all points with integer coordinates on the surface of $C(r)$.
|
||||
|
||||
Let $S(r)$ be the sum of the Manhattan distances of all elements of $I(r)$ to the origin $O$.
|
||||
|
||||
E.g. $S(45)=34518$.
|
||||
|
||||
Find $S({10}^{10})$.
|
||||
|
||||
# --hints--
|
||||
|
||||
`scarySphere()` should return `878825614395267100`.
|
||||
|
||||
```js
|
||||
assert.strictEqual(scarySphere(), 878825614395267100);
|
||||
```
|
||||
|
||||
# --seed--
|
||||
|
||||
## --seed-contents--
|
||||
|
||||
```js
|
||||
function scarySphere() {
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
scarySphere();
|
||||
```
|
||||
|
||||
# --solutions--
|
||||
|
||||
```js
|
||||
// solution required
|
||||
```
|
Reference in New Issue
Block a user