chore(i18n,learn): processed translations (#44851)
This commit is contained in:
@ -0,0 +1,46 @@
|
||||
---
|
||||
id: 5900f50c1000cf542c51001e
|
||||
title: 'Problem 415: Titanic sets'
|
||||
challengeType: 5
|
||||
forumTopicId: 302084
|
||||
dashedName: problem-415-titanic-sets
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
A set of lattice points $S$ is called a titanic set if there exists a line passing through exactly two points in $S$.
|
||||
|
||||
An example of a titanic set is $S = \\{(0, 0), (0, 1), (0, 2), (1, 1), (2, 0), (1, 0)\\}$, where the line passing through (0, 1) and (2, 0) does not pass through any other point in $S$.
|
||||
|
||||
On the other hand, the set {(0, 0), (1, 1), (2, 2), (4, 4)} is not a titanic set since the line passing through any two points in the set also passes through the other two.
|
||||
|
||||
For any positive integer $N$, let $T(N)$ be the number of titanic sets $S$ whose every point ($x$, $y$) satisfies $0 ≤ x$, $y ≤ N$. It can be verified that $T(1) = 11$, $T(2) = 494$, $T(4) = 33\\,554\\,178$, $T(111)\bmod {10}^8 = 13\\,500\\,401$ and $T({10}^5)\bmod {10}^8 = 63\\,259\\,062$.
|
||||
|
||||
Find $T({10}^{11})\bmod {10}^8$.
|
||||
|
||||
# --hints--
|
||||
|
||||
`titanicSets()` should return `55859742`.
|
||||
|
||||
```js
|
||||
assert.strictEqual(titanicSets(), 55859742);
|
||||
```
|
||||
|
||||
# --seed--
|
||||
|
||||
## --seed-contents--
|
||||
|
||||
```js
|
||||
function titanicSets() {
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
titanicSets();
|
||||
```
|
||||
|
||||
# --solutions--
|
||||
|
||||
```js
|
||||
// solution required
|
||||
```
|
Reference in New Issue
Block a user