chore(i18n,learn): processed translations (#44851)
This commit is contained in:
@ -0,0 +1,56 @@
|
||||
---
|
||||
id: 5900f5241000cf542c510037
|
||||
title: 'Problem 440: GCD and Tiling'
|
||||
challengeType: 5
|
||||
forumTopicId: 302112
|
||||
dashedName: problem-440-gcd-and-tiling
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
We want to tile a board of length $n$ and height 1 completely, with either 1 × 2 blocks or 1 × 1 blocks with a single decimal digit on top:
|
||||
|
||||
<img class="img-responsive center-block" alt="ten blocks 1x1 with single decimal digit on top, and 1x2 block" src="https://cdn.freecodecamp.org/curriculum/project-euler/gcd-and-tiling-1.png" style="background-color: white; padding: 10px;" />
|
||||
|
||||
For example, here are some of the ways to tile a board of length $n = 8$:
|
||||
|
||||
<img class="img-responsive center-block" alt="examples of ways to tile a board of length n = 8" src="https://cdn.freecodecamp.org/curriculum/project-euler/gcd-and-tiling-2.png" style="background-color: white; padding: 10px;" />
|
||||
|
||||
Let $T(n)$ be the number of ways to tile a board of length $n$ as described above.
|
||||
|
||||
For example, $T(1) = 10$ and $T(2) = 101$.
|
||||
|
||||
Let $S(L)$ be the triple sum $\sum_{a, b, c} gcd(T(c^a), T(c^b))$ for $1 ≤ a, b, c ≤ L$.
|
||||
|
||||
For example:
|
||||
|
||||
$$\begin{align} & S(2) = 10\\,444 \\\\ & S(3) = 1\\,292\\,115\\,238\\,446\\,807\\,016\\,106\\,539\\,989 \\\\ & S(4)\bmod 987\\,898\\,789 = 670\\,616\\,280. \end{align}$$
|
||||
|
||||
Find $S(2000)\bmod 987\\,898\\,789$.
|
||||
|
||||
# --hints--
|
||||
|
||||
`gcdAndTiling()` should return `970746056`.
|
||||
|
||||
```js
|
||||
assert.strictEqual(gcdAndTiling(), 970746056);
|
||||
```
|
||||
|
||||
# --seed--
|
||||
|
||||
## --seed-contents--
|
||||
|
||||
```js
|
||||
function gcdAndTiling() {
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
gcdAndTiling();
|
||||
```
|
||||
|
||||
# --solutions--
|
||||
|
||||
```js
|
||||
// solution required
|
||||
```
|
Reference in New Issue
Block a user