chore(i18n,learn): processed translations (#44851)
This commit is contained in:
@ -0,0 +1,48 @@
|
||||
---
|
||||
id: 5900f5271000cf542c51003a
|
||||
title: 'Problem 443: GCD sequence'
|
||||
challengeType: 5
|
||||
forumTopicId: 302115
|
||||
dashedName: problem-443-gcd-sequence
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
Let $g(n)$ be a sequence defined as follows:
|
||||
|
||||
$$\begin{align} & g(4) = 13, \\\\ & g(n) = g(n-1) + gcd(n, g(n - 1)) \text{ for } n > 4. \end{align}$$
|
||||
|
||||
The first few values are:
|
||||
|
||||
$$\begin{array}{l} n & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & \ldots \\\\ g(n) & 13 & 14 & 16 & 17 & 18 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 51 & 54 & 55 & 60 & \ldots \end{array}$$
|
||||
|
||||
You are given that $g(1\\,000) = 2\\,524$ and $g(1\\,000\\,000) = 2\\,624\\,152$.
|
||||
|
||||
Find $g({10}^{15})$.
|
||||
|
||||
# --hints--
|
||||
|
||||
`gcdSequence()` should return `2744233049300770`.
|
||||
|
||||
```js
|
||||
assert.strictEqual(gcdSequence(), 2744233049300770);
|
||||
```
|
||||
|
||||
# --seed--
|
||||
|
||||
## --seed-contents--
|
||||
|
||||
```js
|
||||
function gcdSequence() {
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
gcdSequence();
|
||||
```
|
||||
|
||||
# --solutions--
|
||||
|
||||
```js
|
||||
// solution required
|
||||
```
|
Reference in New Issue
Block a user