chore(i18n,learn): processed translations (#44851)
This commit is contained in:
@ -0,0 +1,50 @@
|
||||
---
|
||||
id: 5900f52c1000cf542c51003d
|
||||
title: 'Problem 446: Retractions B'
|
||||
challengeType: 5
|
||||
forumTopicId: 302118
|
||||
dashedName: problem-446-retractions-b
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
For every integer $n > 1$, the family of functions $f_{n, a, b}$ is defined by:
|
||||
|
||||
$f_{n, a, b}(x) ≡ ax + b\bmod n$ for $a, b, x$ integer and $0 \lt a \lt n$, $0 \le b \lt n$, $0 \le x \lt n$.
|
||||
|
||||
We will call $f_{n, a, b}$ a retraction if $f_{n, a, b}(f_{n, a, b}(x)) \equiv f_{n, a, b}(x)\bmod n$ for every $0 \le x \lt n$.
|
||||
|
||||
Let $R(n)$ be the number of retractions for $n$.
|
||||
|
||||
$F(N) = \displaystyle\sum_{n = 1}^N R(n^4 + 4)$.
|
||||
|
||||
$F(1024) = 77\\,532\\,377\\,300\\,600$.
|
||||
|
||||
Find $F({10}^7)$. Give your answer modulo $1\\,000\\,000\\,007$.
|
||||
|
||||
# --hints--
|
||||
|
||||
`retractionsB()` should return `907803852`.
|
||||
|
||||
```js
|
||||
assert.strictEqual(retractionsB(), 907803852);
|
||||
```
|
||||
|
||||
# --seed--
|
||||
|
||||
## --seed-contents--
|
||||
|
||||
```js
|
||||
function retractionsB() {
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
retractionsB();
|
||||
```
|
||||
|
||||
# --solutions--
|
||||
|
||||
```js
|
||||
// solution required
|
||||
```
|
Reference in New Issue
Block a user