chore(i18n,learn): processed translations (#44851)
This commit is contained in:
@ -0,0 +1,152 @@
|
||||
---
|
||||
id: 59880443fb36441083c6c20e
|
||||
title: Euler method
|
||||
challengeType: 5
|
||||
forumTopicId: 302258
|
||||
dashedName: euler-method
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value. It is an explicit method for solving initial value problems (IVPs), as described in [this article](https://www.freecodecamp.org/news/eulers-method-explained-with-examples/ "news: Euler's Method Explained with Examples").
|
||||
|
||||
The ODE has to be provided in the following form:
|
||||
|
||||
<ul style='list-style: none;'>
|
||||
<li><big>$\frac{dy(t)}{dt} = f(t,y(t))$</big></li>
|
||||
</ul>
|
||||
|
||||
with an initial value
|
||||
|
||||
<ul style='list-style: none;'>
|
||||
<li><big>$y(t_0) = y_0$</big></li>
|
||||
</ul>
|
||||
|
||||
To get a numeric solution, we replace the derivative on the LHS with a finite difference approximation:
|
||||
|
||||
<ul style='list-style: none;'>
|
||||
<li><big>$\frac{dy(t)}{dt} \approx \frac{y(t+h)-y(t)}{h}$</big></li>
|
||||
</ul>
|
||||
|
||||
then solve for $y(t+h)$:
|
||||
|
||||
<ul style='list-style: none;'>
|
||||
<li><big>$y(t+h) \approx y(t) + h \, \frac{dy(t)}{dt}$</big></li>
|
||||
</ul>
|
||||
|
||||
which is the same as
|
||||
|
||||
<ul style='list-style: none;'>
|
||||
<li><big>$y(t+h) \approx y(t) + h \, f(t,y(t))$</big></li>
|
||||
</ul>
|
||||
|
||||
The iterative solution rule is then:
|
||||
|
||||
<ul style='list-style: none;'>
|
||||
<li><big>$y_{n+1} = y_n + h \, f(t_n, y_n)$</big></li>
|
||||
</ul>
|
||||
|
||||
where $h$ is the step size, the most relevant parameter for accuracy of the solution. A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand.
|
||||
|
||||
**Example: Newton's Cooling Law**
|
||||
|
||||
Newton's cooling law describes how an object of initial temperature $T(t_0) = T_0$ cools down in an environment of temperature $T_R$:
|
||||
|
||||
<ul style='list-style: none;'>
|
||||
<li><big>$\frac{dT(t)}{dt} = -k \, \Delta T$</big></li>
|
||||
</ul>
|
||||
|
||||
or
|
||||
|
||||
<ul style='list-style: none;'>
|
||||
<li><big>$\frac{dT(t)}{dt} = -k \, (T(t) - T_R)$</big></li>
|
||||
</ul>
|
||||
|
||||
It says that the cooling rate $\\frac{dT(t)}{dt}$ of the object is proportional to the current temperature difference $\\Delta T = (T(t) - T_R)$ to the surrounding environment.
|
||||
|
||||
The analytical solution, which we will compare to the numerical approximation, is
|
||||
|
||||
<ul style='list-style: none;'>
|
||||
<li><big>$T(t) = T_R + (T_0 - T_R) \; e^{-k t}$</big></li>
|
||||
</ul>
|
||||
|
||||
# --instructions--
|
||||
|
||||
Implement a routine of Euler's method and then use it to solve the given example of Newton's cooling law for three different step sizes of:
|
||||
|
||||
<ul>
|
||||
<li><code>2 s</code></li>
|
||||
<li><code>5 s</code> and</li>
|
||||
<li><code>10 s</code></li>
|
||||
</ul>
|
||||
|
||||
and compare with the analytical solution.
|
||||
|
||||
**Initial values:**
|
||||
|
||||
<ul>
|
||||
<li>initial temperature <big>$T_0$</big> shall be <code>100 °C</code></li>
|
||||
<li>room temperature <big>$T_R$</big> shall be <code>20 °C</code></li>
|
||||
<li>cooling constant <big>$k$</big> shall be <code>0.07</code></li>
|
||||
<li>time interval to calculate shall be from <code>0 s</code> to <code>100 s</code></li>
|
||||
</ul>
|
||||
|
||||
First parameter to the function is initial time, second parameter is initial temperature, third parameter is elapsed time and fourth parameter is step size.
|
||||
|
||||
# --hints--
|
||||
|
||||
`eulersMethod` should be a function.
|
||||
|
||||
```js
|
||||
assert(typeof eulersMethod === 'function');
|
||||
```
|
||||
|
||||
`eulersMethod(0, 100, 100, 2)` should return a number.
|
||||
|
||||
```js
|
||||
assert(typeof eulersMethod(0, 100, 100, 2) === 'number');
|
||||
```
|
||||
|
||||
`eulersMethod(0, 100, 100, 2)` should return 20.0424631833732.
|
||||
|
||||
```js
|
||||
assert.equal(eulersMethod(0, 100, 100, 2), 20.0424631833732);
|
||||
```
|
||||
|
||||
`eulersMethod(0, 100, 100, 5)` should return 20.01449963666907.
|
||||
|
||||
```js
|
||||
assert.equal(eulersMethod(0, 100, 100, 5), 20.01449963666907);
|
||||
```
|
||||
|
||||
`eulersMethod(0, 100, 100, 10)` should return 20.000472392.
|
||||
|
||||
```js
|
||||
assert.equal(eulersMethod(0, 100, 100, 10), 20.000472392);
|
||||
```
|
||||
|
||||
# --seed--
|
||||
|
||||
## --seed-contents--
|
||||
|
||||
```js
|
||||
function eulersMethod(x1, y1, x2, h) {
|
||||
|
||||
}
|
||||
```
|
||||
|
||||
# --solutions--
|
||||
|
||||
```js
|
||||
function eulersMethod(x1, y1, x2, h) {
|
||||
let x = x1;
|
||||
let y = y1;
|
||||
|
||||
while ((x < x2 && x1 < x2) || (x > x2 && x1 > x2)) {
|
||||
y += h * (-0.07 * (y - 20));
|
||||
x += h;
|
||||
}
|
||||
|
||||
return y;
|
||||
}
|
||||
```
|
Reference in New Issue
Block a user