diff --git a/guide/english/data-science-tools/pandas/index.md b/guide/english/data-science-tools/pandas/index.md index ba47030db2..cc6ecfa9d9 100644 --- a/guide/english/data-science-tools/pandas/index.md +++ b/guide/english/data-science-tools/pandas/index.md @@ -119,6 +119,15 @@ Another option for subsetting a dataframe is using the loc and iloc methods. The ages = df.loc["age"] ``` +Instead of passing only one column name inside the brackets, we can pass a List of column names. The return value is a DataFrame. +```python +person_info = df[["name","age","address"]] +``` +The `person_info` variable is a reference to the original `df`. If you want to make a clone that does not reference the original, simply use the `copy` method: +```python +person_info = df[["name","age","address"]].copy() +``` + ### Basic Statistics Descriptive statistics can be performed on each column of a pandas dataframe. @@ -163,11 +172,10 @@ left = pd.DataFrame({'A': ['A0', 'A1', 'A2'], index=['K0', 'K1', 'K2']) right = pd.DataFrame({'C': ['C0', 'C2', 'C3'], - 'D': ['D0', 'D2', 'D3']}, + 'D': ['D0', 'D2', 'D3']}, index=['K0', 'K2', 'K3']) ``` - ```python left.join(right) ``` @@ -214,9 +222,6 @@ It wil return a Boolean value telling you whether it’s a missing value. ```pd.dropna()``` This will drop all rows that have any missing values. - - - #### More Information: 1. [pandas](http://pandas.pydata.org/) 2. [read_csv](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html?highlight=read_csv#pandas.read_csv)