diff --git a/challenges/08-coding-interview-questions-and-take-home-assignments/project-euler-problems.json b/challenges/08-coding-interview-questions-and-take-home-assignments/project-euler-problems.json index 8b6468e922..3771223988 100644 --- a/challenges/08-coding-interview-questions-and-take-home-assignments/project-euler-problems.json +++ b/challenges/08-coding-interview-questions-and-take-home-assignments/project-euler-problems.json @@ -842,17 +842,20 @@ "type": "bonfire", "title": "Problem 27: Quadratic primes", "tests": [ - "assert.strictEqual(euler27(), -59231, 'message: euler27() should return -59231.');" + "assert(quadraticPrimes(200) == -4925, 'message: quadraticPrimes(200) should return -4925.');", + "assert(quadraticPrimes(500) == -18901, 'message: quadraticPrimes(500) should return -18901.');", + "assert(quadraticPrimes(800) == -43835, 'message: quadraticPrimes(800) should return -43835.');", + "assert(quadraticPrimes(1000) == -59231, 'message: quadraticPrimes(1000) should return -59231.');" ], "solutions": [], "translations": {}, "challengeSeed": [ - "function euler27() {", + "function quadraticPrimes(range) {", " // Good luck!", - " return true;", + " return range;", "}", "", - "euler27();" + "quadraticPrimes(1000);" ], "description": [ "Euler discovered the remarkable quadratic formula:", @@ -861,7 +864,7 @@ "The incredible formula $n^2 - 79n + 1601$ was discovered, which produces 80 primes for the consecutive values $0 \\le n \\le 79$. The product of the coefficients, −79 and 1601, is −126479.", "Considering quadratics of the form:", "", - "$n^2 + an + b$, where $|a| < 1000$ and $|b| \\le 1000$where $|n|$ is the modulus/absolute value of $n$e.g. $|11| = 11$ and $|-4| = 4$", + "$n^2 + an + b$, where $|a| < range$ and $|b| \\le range$where $|n|$ is the modulus/absolute value of $n$e.g. $|11| = 11$ and $|-4| = 4$", "", "Find the product of the coefficients, $a$ and $b$, for the quadratic expression that produces the maximum number of primes for consecutive values of $n$, starting with $n = 0$." ]