diff --git a/challenges/08-coding-interview-questions-and-take-home-assignments/project-euler-problems.json b/challenges/08-coding-interview-questions-and-take-home-assignments/project-euler-problems.json
index 8b6468e922..3771223988 100644
--- a/challenges/08-coding-interview-questions-and-take-home-assignments/project-euler-problems.json
+++ b/challenges/08-coding-interview-questions-and-take-home-assignments/project-euler-problems.json
@@ -842,17 +842,20 @@
"type": "bonfire",
"title": "Problem 27: Quadratic primes",
"tests": [
- "assert.strictEqual(euler27(), -59231, 'message: euler27()
should return -59231.');"
+ "assert(quadraticPrimes(200) == -4925, 'message: quadraticPrimes(200)
should return -4925.');",
+ "assert(quadraticPrimes(500) == -18901, 'message: quadraticPrimes(500)
should return -18901.');",
+ "assert(quadraticPrimes(800) == -43835, 'message: quadraticPrimes(800)
should return -43835.');",
+ "assert(quadraticPrimes(1000) == -59231, 'message: quadraticPrimes(1000)
should return -59231.');"
],
"solutions": [],
"translations": {},
"challengeSeed": [
- "function euler27() {",
+ "function quadraticPrimes(range) {",
" // Good luck!",
- " return true;",
+ " return range;",
"}",
"",
- "euler27();"
+ "quadraticPrimes(1000);"
],
"description": [
"Euler discovered the remarkable quadratic formula:",
@@ -861,7 +864,7 @@
"The incredible formula $n^2 - 79n + 1601$ was discovered, which produces 80 primes for the consecutive values $0 \\le n \\le 79$. The product of the coefficients, −79 and 1601, is −126479.",
"Considering quadratics of the form:",
"",
- "$n^2 + an + b$, where $|a| < 1000$ and $|b| \\le 1000$where $|n|$ is the modulus/absolute value of $n$e.g. $|11| = 11$ and $|-4| = 4$",
+ "$n^2 + an + b$, where $|a| < range$ and $|b| \\le range$where $|n|$ is the modulus/absolute value of $n$e.g. $|11| = 11$ and $|-4| = 4$",
"",
"Find the product of the coefficients, $a$ and $b$, for the quadratic expression that produces the maximum number of primes for consecutive values of $n$, starting with $n = 0$."
]