fix(curriculum): rework Project Euler 70 (#41988)

* fix: rework challenge to use argument in function

* fix: use MathJax for display consistency

* fix: add solution
This commit is contained in:
gikf
2021-05-05 09:52:16 +02:00
committed by GitHub
parent 3e9bc73d67
commit 7a04b8977f

View File

@ -8,24 +8,42 @@ dashedName: problem-70-totient-permutation
# --description--
Euler's Totient function, φ(`n`) \[sometimes called the phi function], is used to determine the number of positive numbers less than or equal to `n` which are relatively prime to `n`. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9)=6. The number 1 is considered to be relatively prime to every positive number, so φ(1)=1.
Euler's Totient function, ${\phi}(n)$ (sometimes called the phi function), is used to determine the number of positive numbers less than or equal to `n` which are relatively prime to `n`. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, ${\phi}(9) = 6$. The number 1 is considered to be relatively prime to every positive number, so ${\phi}(1) = 1$.
Interestingly, φ(87109)=79180, and it can be seen that 87109 is a permutation of 79180.
Interestingly, ${\phi}(87109) = 79180$, and it can be seen that 87109 is a permutation of 79180.
Find the value of `n`, 1 &lt; `n` &lt; 10<sup>7</sup>, for which φ(`n`) is a permutation of `n` and the ratio `n`/φ(`n`) produces a minimum.
Find the value of `n`, 1 &lt; `n` &lt; `limit`, for which ${\phi}(n)$ is a permutation of `n` and the ratio $\displaystyle\frac{n}{{\phi}(n)}$ produces a minimum.
# --hints--
`totientPermutation()` should return a number.
`totientPermutation(10000)` should return a number.
```js
assert(typeof totientPermutation() === 'number');
assert(typeof totientPermutation(10000) === 'number');
```
`totientPermutation()` should return 8319823.
`totientPermutation(10000)` should return `4435`.
```js
assert.strictEqual(totientPermutation(), 8319823);
assert.strictEqual(totientPermutation(10000), 4435);
```
`totientPermutation(100000)` should return `75841`.
```js
assert.strictEqual(totientPermutation(100000), 75841);
```
`totientPermutation(500000)` should return `474883`.
```js
assert.strictEqual(totientPermutation(500000), 474883);
```
`totientPermutation(10000000)` should return `8319823`.
```js
assert.strictEqual(totientPermutation(10000000), 8319823);
```
# --seed--
@ -33,16 +51,68 @@ assert.strictEqual(totientPermutation(), 8319823);
## --seed-contents--
```js
function totientPermutation() {
function totientPermutation(limit) {
return true;
}
totientPermutation();
totientPermutation(10000);
```
# --solutions--
```js
// solution required
function totientPermutation(limit) {
function getSievePrimes(max) {
const primes = [];
const primesMap = new Array(max).fill(true);
primesMap[0] = false;
primesMap[1] = false;
for (let i = 2; i < max; i += 2) {
if (primesMap[i]) {
primes.push(i);
for (let j = i * i; j < max; j += i) {
primesMap[j] = false;
}
}
if (i === 2) {
i = 1;
}
}
return primes;
}
function sortDigits(number) {
return number.toString().split('').sort().join('');
}
function isPermutation(numberA, numberB) {
return sortDigits(numberA) === sortDigits(numberB);
}
const MAX_PRIME = 4000;
const primes = getSievePrimes(MAX_PRIME);
let nValue = 1;
let minRatio = Infinity;
for (let i = 1; i < primes.length; i++) {
for (let j = i + 1; j < primes.length; j++) {
const num = primes[i] * primes[j];
if (num > limit) {
break;
}
const phi = (primes[i] - 1) * (primes[j] - 1);
const ratio = num / phi;
if (minRatio > ratio && isPermutation(num, phi)) {
nValue = num;
minRatio = ratio;
}
}
}
return nValue;
}
```