fix(curriculum): convert all video challenges to markdown (#39189)
This commit is contained in:
@ -7,10 +7,12 @@ videoId: LMNub5frQi4
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
@ -18,11 +20,13 @@ question:
|
||||
text: |
|
||||
Most people that are experts in AI or machine learning usually...:
|
||||
answers:
|
||||
- have one specialization.
|
||||
- have many specializations.
|
||||
- have a deep understanding of many different frameworks.
|
||||
- |
|
||||
have one specialization.
|
||||
- |
|
||||
have many specializations.
|
||||
- |
|
||||
have a deep understanding of many different frameworks.
|
||||
solution: 1
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,21 +7,26 @@ videoId: eCATNvwraXg
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: What is **not** a good way to increase the accuracy of a convolutional neural network?
|
||||
text: |
|
||||
What is **not** a good way to increase the accuracy of a convolutional neural network?
|
||||
answers:
|
||||
- Augmenting the data you already have.
|
||||
- Using a pre-trained model.
|
||||
- Using your test data to retrain the model.
|
||||
- |
|
||||
Augmenting the data you already have.
|
||||
- |
|
||||
Using a pre-trained model.
|
||||
- |
|
||||
Using your test data to retrain the model.
|
||||
solution: 3
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,21 +7,26 @@ videoId: LrdmcQpTyLw
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: What are the three main properties of each convolutional layer?
|
||||
text: |
|
||||
What are the three main properties of each convolutional layer?
|
||||
answers:
|
||||
- Input size, the number of filters, and the sample size of the filters.
|
||||
- Input size, input dimensions, and the color values of the input.
|
||||
- Input size, input padding, and stride.
|
||||
- |
|
||||
Input size, the number of filters, and the sample size of the filters.
|
||||
- |
|
||||
Input size, input dimensions, and the color values of the input.
|
||||
- |
|
||||
Input size, input padding, and stride.
|
||||
solution: 1
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,10 +7,12 @@ videoId: _1kTP7uoU9E
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
@ -18,11 +20,13 @@ question:
|
||||
text: |
|
||||
Dense neural networks analyze input on a global scale and recognize patterns in specific areas. Convolutional neural networks...:
|
||||
answers:
|
||||
- also analyze input globally and extract features from specific areas.
|
||||
- do not work well for image classification or object detection.
|
||||
- scan through the entire input a little at a time and learn local patterns.
|
||||
- |
|
||||
also analyze input globally and extract features from specific areas.
|
||||
- |
|
||||
do not work well for image classification or object detection.
|
||||
- |
|
||||
scan through the entire input a little at a time and learn local patterns.
|
||||
solution: 3
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,15 +7,18 @@ videoId: 5wHw8BTd2ZQ
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: What kind of estimator/model does TensorFlow recommend using for classification?
|
||||
text: |
|
||||
What kind of estimator/model does TensorFlow recommend using for classification?
|
||||
answers:
|
||||
- |
|
||||
`LinearClassifier`
|
||||
@ -27,4 +30,3 @@ question:
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,21 +7,26 @@ videoId: qFF7ZQNvK9E
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: What is classification?
|
||||
text: |
|
||||
What is classification?
|
||||
answers:
|
||||
- The process of separating data points into different classes.
|
||||
- Predicting a numeric value or forecast based on independent and dependent variables.
|
||||
- None of the above.
|
||||
- |
|
||||
The process of separating data points into different classes.
|
||||
- |
|
||||
Predicting a numeric value or forecast based on independent and dependent variables.
|
||||
- |
|
||||
None of the above.
|
||||
solution: 1
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,23 +7,30 @@ videoId: 8sqIaHc9Cz4
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: Which of the following steps is **not** part of the K-Means algorithm?
|
||||
text: |
|
||||
Which of the following steps is **not** part of the K-Means algorithm?
|
||||
answers:
|
||||
- Randomly pick K points to place K centeroids.
|
||||
- Assign each K point to the closest K centeroid.
|
||||
- Move each K centeroid into the middle of all of their data points.
|
||||
- Shuffle the K points so they're redistributed randomly.
|
||||
- Reassign each K point to the closest K centeroid.
|
||||
- |
|
||||
Randomly pick K points to place K centeroids.
|
||||
- |
|
||||
Assign each K point to the closest K centeroid.
|
||||
- |
|
||||
Move each K centeroid into the middle of all of their data points.
|
||||
- |
|
||||
Shuffle the K points so they're redistributed randomly.
|
||||
- |
|
||||
Reassign each K point to the closest K centeroid.
|
||||
solution: 4
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,21 +7,26 @@ videoId: IZg24y4wEPY
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: What makes a Hidden Markov model different than linear regression or classification?
|
||||
text: |
|
||||
What makes a Hidden Markov model different than linear regression or classification?
|
||||
answers:
|
||||
- It uses probability distributions to predict future events or states.
|
||||
- It analyzes the relationship between independent and dependent variables to make predictions.
|
||||
- It separates data points into separate categories.
|
||||
- |
|
||||
It uses probability distributions to predict future events or states.
|
||||
- |
|
||||
It analyzes the relationship between independent and dependent variables to make predictions.
|
||||
- |
|
||||
It separates data points into separate categories.
|
||||
solution: 1
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,21 +7,26 @@ videoId: _cEwvqVoBhI
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: What are epochs?
|
||||
text: |
|
||||
What are epochs?
|
||||
answers:
|
||||
- The number of times the model will see the same data.
|
||||
- A type of graph.
|
||||
- The number of elements you feed to the model at once.
|
||||
- |
|
||||
The number of times the model will see the same data.
|
||||
- |
|
||||
A type of graph.
|
||||
- |
|
||||
The number of elements you feed to the model at once.
|
||||
solution: 1
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,21 +7,26 @@ videoId: wz9J1slsi7I
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: What is categorical data?
|
||||
text: |
|
||||
What is categorical data?
|
||||
answers:
|
||||
- Another term for one-hot encoding.
|
||||
- Any data that is not numeric.
|
||||
- Any data that is represented numerically.
|
||||
- |
|
||||
Another term for one-hot encoding.
|
||||
- |
|
||||
Any data that is not numeric.
|
||||
- |
|
||||
Any data that is represented numerically.
|
||||
solution: 2
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,15 +7,18 @@ videoId: fYAYvLUawnc
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: What TensorFlow module should you import to implement `.HiddenMarkovModel()`?
|
||||
text: |
|
||||
What TensorFlow module should you import to implement `.HiddenMarkovModel()`?
|
||||
answers:
|
||||
- |
|
||||
`tensorflow.keras`
|
||||
@ -27,4 +30,3 @@ question:
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,10 +7,12 @@ videoId: u85IOSsJsPI
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
@ -18,11 +20,13 @@ question:
|
||||
text: |
|
||||
What does the pandas `.head()` function do?
|
||||
answers:
|
||||
- Returns the number of entries in a data frame.
|
||||
- Returns the number of columns in a data frame.
|
||||
- By default, shows the first five rows or entries in a data frame.
|
||||
- |
|
||||
Returns the number of entries in a data frame.
|
||||
- |
|
||||
Returns the number of columns in a data frame.
|
||||
- |
|
||||
By default, shows the first five rows or entries in a data frame.
|
||||
solution: 3
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,10 +7,12 @@ videoId: u5lZURgcWnU
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
@ -20,12 +22,15 @@ question:
|
||||
|
||||
You have the average temperature in the month of March for the last 100 years. Using this data, you want to predict the average temperature in the month of March 5 years from now.
|
||||
answers:
|
||||
- Multiple regression
|
||||
- Correlation
|
||||
- Decision tree
|
||||
- Linear regression
|
||||
- |
|
||||
Multiple regression
|
||||
- |
|
||||
Correlation
|
||||
- |
|
||||
Decision tree
|
||||
- |
|
||||
Linear regression
|
||||
solution: 4
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -1,16 +1,18 @@
|
||||
---
|
||||
id: 5e8f2f13c4cdbe86b5c72d87
|
||||
title: "Introduction: Machine Learning Fundamentals"
|
||||
title: 'Introduction: Machine Learning Fundamentals'
|
||||
challengeType: 11
|
||||
isHidden: false
|
||||
videoId: KwL1qTR5MT8
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
@ -18,11 +20,13 @@ question:
|
||||
text: |
|
||||
Which statement below is **false**?
|
||||
answers:
|
||||
- Neural networks are modeled after the way the human brain works.
|
||||
- Computer programs that play tic-tac-toe or chess against human players are examples of simple artificial intelligence.
|
||||
- Machine learning is a subset of artificial intelligence.
|
||||
- |
|
||||
Neural networks are modeled after the way the human brain works.
|
||||
- |
|
||||
Computer programs that play tic-tac-toe or chess against human players are examples of simple artificial intelligence.
|
||||
- |
|
||||
Machine learning is a subset of artificial intelligence.
|
||||
solution: 1
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,23 +7,30 @@ videoId: r9hRyGGjOgQ
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: Which of the following is **not** a type of tensor?
|
||||
text: |
|
||||
Which of the following is **not** a type of tensor?
|
||||
answers:
|
||||
- Variable
|
||||
- Flowing
|
||||
- Placeholder
|
||||
- SparseTensor
|
||||
- Constant
|
||||
- |
|
||||
Variable
|
||||
- |
|
||||
Flowing
|
||||
- |
|
||||
Placeholder
|
||||
- |
|
||||
SparseTensor
|
||||
- |
|
||||
Constant
|
||||
solution: 2
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,10 +7,12 @@ videoId: WO1hINnBj20
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
@ -18,11 +20,13 @@ question:
|
||||
text: |
|
||||
Before you make a prediction with your own review, you should...:
|
||||
answers:
|
||||
- decode the training dataset and compare the results to the test data.
|
||||
- use the encodings from the training dataset to encode your review.
|
||||
- assign random values between 0 and the maximum number of vocabulary in your dataset to each word in your review.
|
||||
- |
|
||||
decode the training dataset and compare the results to the test data.
|
||||
- |
|
||||
use the encodings from the training dataset to encode your review.
|
||||
- |
|
||||
assign random values between 0 and the maximum number of vocabulary in your dataset to each word in your review.
|
||||
solution: 2
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,10 +7,12 @@ videoId: mUU9YXOFbZg
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
@ -18,11 +20,13 @@ question:
|
||||
text: |
|
||||
Word embeddings are...:
|
||||
answers:
|
||||
- an unordered group of encoded words that describes the frequency of words in a given document.
|
||||
- a group of encoded words that preserves the original order of the words in a given document.
|
||||
- a vectorized representation of words in a given document that places words with similar meanings near each other.
|
||||
- |
|
||||
an unordered group of encoded words that describes the frequency of words in a given document.
|
||||
- |
|
||||
a group of encoded words that preserves the original order of the words in a given document.
|
||||
- |
|
||||
a vectorized representation of words in a given document that places words with similar meanings near each other.
|
||||
solution: 3
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,15 +7,18 @@ videoId: bX5681NPOcA
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: What is true about Recurrent Neural Networks?
|
||||
text: |
|
||||
What is true about Recurrent Neural Networks?
|
||||
answers:
|
||||
- |
|
||||
1: They are a type of feed-forward neural network.
|
||||
@ -29,4 +32,3 @@ question:
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,10 +7,12 @@ videoId: ZyCaF5S-lKg
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
@ -18,11 +20,13 @@ question:
|
||||
text: |
|
||||
Natural Language Processing is a branch of artificial intelligence that...:
|
||||
answers:
|
||||
- deals with how computers understand and process natural/human languages.
|
||||
- translates image data into natural/human languages.
|
||||
- is focused on translating computer languages into natural/human languages.
|
||||
- |
|
||||
deals with how computers understand and process natural/human languages.
|
||||
- |
|
||||
translates image data into natural/human languages.
|
||||
- |
|
||||
is focused on translating computer languages into natural/human languages.
|
||||
solution: 1
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,21 +7,26 @@ videoId: S45tqW6BqRs
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: Which activation function switches values between -1 and 1?
|
||||
text: |
|
||||
Which activation function switches values between -1 and 1?
|
||||
answers:
|
||||
- ReLU (Rectified Linear Unit)
|
||||
- Tanh (Hyperbolic Tangent)
|
||||
- Sigmoid
|
||||
- |
|
||||
ReLU (Rectified Linear Unit)
|
||||
- |
|
||||
Tanh (Hyperbolic Tangent)
|
||||
- |
|
||||
Sigmoid
|
||||
solution: 2
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,21 +7,26 @@ videoId: hdOtRPQe1o4
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: What is an optimizer function?
|
||||
text: |
|
||||
What is an optimizer function?
|
||||
answers:
|
||||
- A function that increases the accuracy of a model's predictions.
|
||||
- A function that implements the gradient descent and backpropagation algorithms for you.
|
||||
- A function that reduces the time a model needs to train.
|
||||
- |
|
||||
A function that increases the accuracy of a model's predictions.
|
||||
- |
|
||||
A function that implements the gradient descent and backpropagation algorithms for you.
|
||||
- |
|
||||
A function that reduces the time a model needs to train.
|
||||
solution: 2
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,10 +7,12 @@ videoId: uisdfrNrZW4
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
@ -18,11 +20,13 @@ question:
|
||||
text: |
|
||||
A densely connected neural network is one in which...:
|
||||
answers:
|
||||
- all the neurons in the current layer are connected to one neuron in the previous layer.
|
||||
- all the neurons in each layer are connected randomly.
|
||||
- all the neurons in the current layer are connected to every neuron in the previous layer.
|
||||
- |
|
||||
all the neurons in the current layer are connected to one neuron in the previous layer.
|
||||
- |
|
||||
all the neurons in each layer are connected randomly.
|
||||
- |
|
||||
all the neurons in the current layer are connected to every neuron in the previous layer.
|
||||
solution: 3
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,20 +7,24 @@ videoId: DX7hJuaUZ7o
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: What can happen if the agent does not have a good balance of taking random actions and using learned actions?
|
||||
text: |
|
||||
What can happen if the agent does not have a good balance of taking random actions and using learned actions?
|
||||
answers:
|
||||
- The agent will always try to minimize its reward for the current state/action, leading to local minima.
|
||||
- The agent will always try to maximize its reward for the current state/action, leading to local maxima.
|
||||
- |
|
||||
The agent will always try to minimize its reward for the current state/action, leading to local minima.
|
||||
- |
|
||||
The agent will always try to maximize its reward for the current state/action, leading to local maxima.
|
||||
solution: 2
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
@ -7,21 +7,26 @@ videoId: Cf7DSU0gVb4
|
||||
---
|
||||
|
||||
## Description
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
|
||||
## Tests
|
||||
|
||||
<section id='tests'>
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: The key components of reinforcement learning are...
|
||||
text: |
|
||||
The key components of reinforcement learning are...
|
||||
answers:
|
||||
- environment, representative, state, reaction, and reward.
|
||||
- environment, agent, state, action, and reward.
|
||||
- habitat, agent, state, action, and punishment.
|
||||
- |
|
||||
environment, representative, state, reaction, and reward.
|
||||
- |
|
||||
environment, agent, state, action, and reward.
|
||||
- |
|
||||
habitat, agent, state, action, and punishment.
|
||||
solution: 2
|
||||
```
|
||||
|
||||
</section>
|
||||
|
||||
|
Reference in New Issue
Block a user