fix(curriculum): clean-up Project Euler 361-380 (#43002)
* fix: clean-up Project Euler 361-380 * fix: improve wording Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: remove unnecessary paragraph * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
This commit is contained in:
@ -8,16 +8,20 @@ dashedName: problem-372-pencils-of-rays
|
||||
|
||||
# --description--
|
||||
|
||||
Let R(M, N) be the number of lattice points (x, y) which satisfy M
|
||||
Let $R(M, N)$ be the number of lattice points ($x$, $y$) which satisfy $M \lt x \le N$, $M \lt y \le N$ and $\left\lfloor\frac{y^2}{x^2}\right\rfloor$ is odd.
|
||||
|
||||
Note: represents the floor function.
|
||||
We can verify that $R(0, 100) = 3\\,019$ and $R(100, 10\\,000) = 29\\,750\\,422$.
|
||||
|
||||
Find $R(2 \times {10}^6, {10}^9)$.
|
||||
|
||||
**Note:** $\lfloor x\rfloor$ represents the floor function.
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler372()` should return 301450082318807040.
|
||||
`pencilsOfRays()` should return `301450082318807040`.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler372(), 301450082318807040);
|
||||
assert.strictEqual(pencilsOfRays(), 301450082318807040);
|
||||
```
|
||||
|
||||
# --seed--
|
||||
@ -25,12 +29,12 @@ assert.strictEqual(euler372(), 301450082318807040);
|
||||
## --seed-contents--
|
||||
|
||||
```js
|
||||
function euler372() {
|
||||
function pencilsOfRays() {
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
euler372();
|
||||
pencilsOfRays();
|
||||
```
|
||||
|
||||
# --solutions--
|
||||
|
Reference in New Issue
Block a user