chore(i18n,chn): manually downloaded curriculum (#42858)

This commit is contained in:
Mrugesh Mohapatra
2021-07-15 13:04:11 +05:30
committed by GitHub
parent eef1805fe6
commit 7eb0630f2d
248 changed files with 5645 additions and 2149 deletions

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c14d
title: Data Analysis Example A
title: 数据分析 案例 A
challengeType: 11
videoId: nVAaxZ34khk
dashedName: data-analysis-example-a
@ -8,34 +8,34 @@ dashedName: data-analysis-example-a
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
更多资料:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/FreeCodeCamp-Pandas-Real-Life-Example)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/FreeCodeCamp-Pandas-Real-Life-Example)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
What does the shape of our dataframe tell us?
数据框架的形状表示了什么意义?从中我们又能够了解到什么?
## --answers--
The size in gigabytes the dataframe we loaded into memory is.
我们加载到内存中的数据帧大小为千兆字节。
---
How many rows and columns our dataframe has.
我们的数据框架有多少行和多少列?
---
How many rows the source data had before loading.
在加载数据前,源数据中有多少行?
---
How many columns the source data had before loading.
在加载数据前,源数据中有多少列?
## --video-solution--

View File

@ -8,7 +8,7 @@ dashedName: data-analysis-example-b
# --description--
*您可以使用 Google Colab而不是像视频中显示的那样使用 notebooks.ai。*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
更多资源:

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c160
title: Data Cleaning and Visualizations
title: 数据清理和可视化
challengeType: 11
videoId: mHjxzFS5_Z0
dashedName: data-cleaning-and-visualizations
@ -8,18 +8,18 @@ dashedName: data-cleaning-and-visualizations
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
更多资源:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/data-cleaning-rmotr-freecodecamp)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/data-cleaning-rmotr-freecodecamp)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
When using Matplotlib's global API, what does the order of numbers mean here?
当使用 Matplotlib 的全局 API 时,数字的顺序在这里意味着什么?
```py
plt.subplot(1, 2, 1)
@ -27,15 +27,15 @@ plt.subplot(1, 2, 1)
## --answers--
My figure will have one column, two rows, and I am going to start drawing in the first (left) plot.
这里将创建一个图像包括一列、两行,并且我将开始在第一个图(左)绘图。
---
I am going to start drawing in the first (left) plot, my figure will have two rows, and my figure will have one column.
我将开始在第一个图表(左)绘图,同时我的图像将有两行,也将有一列。
---
My figure will have one row, two columns, and I am going to start drawing in the first (left) plot.
这里将创建一个图像包括一行、两列,并且我将开始在第一个图表(左)绘图。
## --video-solution--

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c15f
title: Data Cleaning Duplicates
title: 数据 清理重复项
challengeType: 11
videoId: kj7QqjXhH6A
dashedName: data-cleaning-duplicates
@ -8,30 +8,30 @@ dashedName: data-cleaning-duplicates
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
以下有更多的资料:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/data-cleaning-rmotr-freecodecamp)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/data-cleaning-rmotr-freecodecamp)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
The Python method `.duplicated()` returns a boolean Series for your DataFrame. `True` is the return value for rows that:
Python 方法 `.duplicated()` 将针对你的 DataFrame 返回一个储存着布尔值的 Series。 `True` 是行的返回值:
## --answers--
contain a duplicate, where the value for the row contains the first occurrence of that value.
包含一个重复值,并且它表示了在这一行这一重复值第一次出现。
---
contain a duplicate, where the value for the row is at least the second occurrence of that value.
包含一个重复值,并且它表示了在这一行这一重复值至少第二次出现。
---
contain a duplicate, where the value for the row contains either the first or second occurrence.
包含一个重复值,并且它表示了在这一行这一重复值第一次或第二次出现。
## --video-solution--

View File

@ -8,7 +8,7 @@ dashedName: data-cleaning-introduction
# --description--
*您可以使用 Google Colab而不是像视频中显示的那样使用 notebooks.ai。*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
以下有更多的资料:

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c15e
title: Data Cleaning with DataFrames
title: DataFrames 中的数据清理
challengeType: 11
videoId: sTMN_pdI6S0
dashedName: data-cleaning-with-dataframes
@ -8,18 +8,18 @@ dashedName: data-cleaning-with-dataframes
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
以下有更多的资料:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/data-cleaning-rmotr-freecodecamp)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/data-cleaning-rmotr-freecodecamp)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
What will the following code print out?
以下代码会打印出什么?
```py
import pandas as pd

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c14f
title: How to use Jupyter Notebooks Intro
title: 如何使用 Jupyter Notebook
challengeType: 11
videoId: h8caJq2Bb9w
dashedName: how-to-use-jupyter-notebooks-intro
@ -8,19 +8,18 @@ dashedName: how-to-use-jupyter-notebooks-intro
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
更多资源:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/ds-content-interactive-jupyterlab-tutorial)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [Twitter Cheat Sheet](https://twitter.com/rmotr_com/status/1122176794696847361)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/ds-content-interactive-jupyterlab-tutorial)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
What is **not** allowed in a Jupyter Notebook's cell?
以下哪个是 Jupyter Notebook 单元格中**不**允许的?
## --answers--
@ -28,11 +27,11 @@ Markdown
---
Python code
Python 代码
---
An Excel sheet
Excel 工作表
## --video-solution--

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c14c
title: Introduction to Data Analysis
title: 数据分析简介
challengeType: 11
videoId: VJrP2FUzKP0
dashedName: introduction-to-data-analysis
@ -8,33 +8,32 @@ dashedName: introduction-to-data-analysis
# --description--
More resources:
以下有更多的资料:
\- [Slides](https://docs.google.com/presentation/d/1fDpjlyMiOMJyuc7_jMekcYLPP2XlSl1eWw9F7yE7byk)
\- [幻灯片](https://docs.google.com/presentation/d/1cUIt8b2ySz-85_ykfeuuWsurccwTAuFPn782pZBzFsU/edit?usp=sharing)
# --question--
## --text--
Why should you choose R over Python for data analysis?
以下哪一项 **不是** 数据分析的一部分?
## --answers--
It's simple to learn.
建立统计模型和数据可视化。
---
It's better at dealing with advanced statistical methods.
为分析选择所需的结论。
---
There are many powerful libraries that support R.
修复不正确的值并删除无效数据。
---
It's free and open source.
将数据转换为适当的数据结构。
## --video-solution--
2

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c150
title: Jupyter Notebooks Cells
title: Jupyter Notebooks 单元格
challengeType: 11
videoId: 5PPegAs9aLA
dashedName: jupyter-notebooks-cells
@ -8,31 +8,30 @@ dashedName: jupyter-notebooks-cells
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
更多资源:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/ds-content-interactive-jupyterlab-tutorial)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [Twitter Cheat Sheet](https://twitter.com/rmotr_com/status/1122176794696847361)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/ds-content-interactive-jupyterlab-tutorial)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
What are the three main types of Jupyter Notebook Cell?
Jupyter Notebook 单元格支持的三种主要类型是什么?
## --answers--
Code, Markdown, and Python
CodeMarkdown Python
---
Code, Markdown, and Raw
CodeMarkdown Raw
---
Markdown, Python, and Raw
MarkdownPython Raw
## --video-solution--

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c151
title: Jupyter Notebooks Importing and Exporting Data
title: Jupyter Notebooks 中导入和导出数据
challengeType: 11
videoId: k1msxD3JIxE
dashedName: jupyter-notebooks-importing-and-exporting-data
@ -8,39 +8,38 @@ dashedName: jupyter-notebooks-importing-and-exporting-data
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
更多资源:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/ds-content-interactive-jupyterlab-tutorial)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [Twitter Cheat Sheet](https://twitter.com/rmotr_com/status/1122176794696847361)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/ds-content-interactive-jupyterlab-tutorial)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
What kind of data can you import and work with in a Jupyter Notebook?
你可以在 Jupyter Notebook 中导入和使用什么样的数据?
## --answers--
Excel files.
Excel 文件。
---
CSV files.
CSV 文件。
---
XML files.
XML 文件
---
Data from an API.
来自 API 的数据
---
All of the above.
以上全部内容
## --video-solution--

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c157
title: Numpy Algebra and Size
title: Numpy 代数和大小
challengeType: 11
videoId: XAT97YLOKD8
dashedName: numpy-algebra-and-size
@ -8,34 +8,34 @@ dashedName: numpy-algebra-and-size
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
以下有更多的资料:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-numpy)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-numpy)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
What is the relationship between size of objects (such as lists and datatypes) in memory in Python's standard library and the NumPy library? Knowing this, what are the implications for performance?
内存中,对象的大小(例如列表和数据类型)在 Python 标准库和 NumPy 库之间有什么关系? 知道这一点,对性能有何影响?
## --answers--
Standard Python objects take up much more memory to store than NumPy objects; operations on comparable standard Python and NumPy objects complete in roughly the same time.
标准的 Python 对象占用了比 NumPy 对象更多的内存;标准的 Python NumPy 对象完成的操作时间是大致相同的。
---
NumPy objects take up much more memory than standard Python objects; operations on NumPy objects complete very quickly compared to comparable objects in standard Python.
Numpy 对象比标准的 Python 对象占用更多的内存Numpy 的对象相比较标准的 Python 更快地完成操作。
---
NumPy objects take up much less memory than Standard Python objects; operations on Standard Python objects complete very quickly compared to comparable objects on NumPy Object.
Numpy 对象比标准的 Python 对象占用更少的内存;标准 Python 的对象相比较 Numpy 的对象更快地完成操作。
---
Standard Python objects take up more memory than NumPy objects; operations on NumPy objects complete very quickly compared to comparable objects in standard Python.
标准 Python 的对象比 Numpy 的对象占用更多的内存Numpy 的对象相比较标准 Python 的对象更快地完成操作。
## --video-solution--

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c154
title: Numpy Arrays
title: Numpy 数组
challengeType: 11
videoId: VDYVFHBL1AM
dashedName: numpy-arrays
@ -8,18 +8,18 @@ dashedName: numpy-arrays
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
以下有更多的资料:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-numpy)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-numpy)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
What will the following code print out?
以下代码会打印出什么?
```py
A = np.array([

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c156
title: Numpy Boolean Arrays
title: Numpy 布尔值的数组
challengeType: 11
videoId: N1ttsMmcVMM
dashedName: numpy-boolean-arrays
@ -8,18 +8,18 @@ dashedName: numpy-boolean-arrays
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
以下有更多的资料:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-numpy)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-numpy)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
What will the following code print out?
以下代码会打印出什么?
```py
a = np.arange(5)

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c152
title: Numpy Introduction A
title: Numpy 简介 A
challengeType: 11
videoId: P-JjV6GBCmk
dashedName: numpy-introduction-a
@ -8,30 +8,30 @@ dashedName: numpy-introduction-a
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
以下有更多的资料:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-numpy)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-numpy)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
Why is Numpy an important, but unpopular Python library?
为什么 Numpy 是一个重要的却又不流行的 Python 库?
## --answers--
Often you won't work directly with Numpy.
你常常不会直接使用 Numpy
---
It is extremely slow.
它是极其缓慢的。
---
Working with Numpy is difficult.
使用 Numpy 的难度是很大的。
## --video-solution--

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c153
title: Numpy Introduction B
title: Numpy 简介 B
challengeType: 11
videoId: YIqgrNLAZkA
dashedName: numpy-introduction-b
@ -8,34 +8,34 @@ dashedName: numpy-introduction-b
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
以下有更多的资料:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-numpy)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-numpy)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
About how much memory does the integer `5` consume in plain Python?
整数 `5` 在 Python 中消耗多少内存?
## --answers--
32 bits
32
---
20 bytes
20 字节
---
16 bytes
16 字节
---
8 bits
8
## --video-solution--

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c155
title: Numpy Operations
title: Numpy 的运算
challengeType: 11
videoId: eqSVcJbaPdk
dashedName: numpy-operations
@ -8,18 +8,18 @@ dashedName: numpy-operations
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
更多资源:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-numpy)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-numpy)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
What is the value of `a` after you run the following code?
运行以下代码后, `a` 的值是多少?
```py
a = np.arange(5)

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c15b
title: Pandas Conditional Selection and Modifying DataFrames
title: Pandas 条件选择和 DataFrames 的修改
challengeType: 11
videoId: BFlH0fN5xRQ
dashedName: pandas-conditional-selection-and-modifying-dataframes
@ -8,18 +8,18 @@ dashedName: pandas-conditional-selection-and-modifying-dataframes
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
以下有更多的资料:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-pandas)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-pandas)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
What will the following code print out?
以下代码会打印出什么?
```py
import pandas as pd

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c15c
title: Pandas Creating Columns
title: Pandas 创建列
challengeType: 11
videoId: _sSo2XZoB3E
dashedName: pandas-creating-columns
@ -8,18 +8,18 @@ dashedName: pandas-creating-columns
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
以下有更多的资料:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-pandas)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-pandas)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
What code would add a "Certificates per month" column to the `certificates_earned` DataFrame like the one below?
哪段代码可以向 DataFrame `certificates_earned` 中添加一个 “Certificates per month” 列,就像下面所展示的?
<pre> Certificates Time (in months) Certificates per month
Tom 8 16 0.50

View File

@ -8,18 +8,18 @@ dashedName: pandas-dataframes
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
以下有更多的资料:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-pandas)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-pandas)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
What will the following code print out?
以下代码会打印出什么?
```py
import pandas as pd

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c159
title: Pandas Indexing and Conditional Selection
title: Pandas 索引和条件选择
challengeType: 11
videoId: '-ZOrgV_aA9A'
dashedName: pandas-indexing-and-conditional-selection
@ -8,18 +8,18 @@ dashedName: pandas-indexing-and-conditional-selection
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
以下有更多的资料:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-pandas)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-pandas)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
What will the following code print out?
以下代码会打印出什么?
```py
import pandas as pd

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c158
title: Pandas Introduction
title: Pandas 简介
challengeType: 11
videoId: 0xACW-8cZU0
dashedName: pandas-introduction
@ -8,18 +8,18 @@ dashedName: pandas-introduction
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
以下有更多的资料:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-pandas)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/freecodecamp-intro-to-pandas)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
What will the following code print out?
以下代码会打印出什么?
```py
import pandas as pd

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c164
title: Parsing HTML and Saving Data
title: 解析 HTML 和保存数据
challengeType: 11
videoId: bJaqnTWQmb0
dashedName: parsing-html-and-saving-data
@ -8,18 +8,18 @@ dashedName: parsing-html-and-saving-data
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
更多资源:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/RDP-Reading-Data-with-Python-and-Pandas)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/RDP-Reading-Data-with-Python-and-Pandas/tree/master/unit-1-reading-data-with-python-and-pandas/lesson-17-reading-html-tables/files)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
What Python library has the `.read_html()` method we can we use for parsing HTML documents and extracting tables?
为了解析 HTML 文本和提取表格,`.read_html()` 位于哪个 Python 的库?
## --answers--

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c166
title: Python Functions and Collections
title: Python 函数和集合
challengeType: 11
videoId: NzpU17ZVlUw
dashedName: python-functions-and-collections
@ -8,30 +8,30 @@ dashedName: python-functions-and-collections
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
更多资源:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/ds-content-python-under-10-minutes)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/ds-content-python-under-10-minutes)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
What is the main difference between lists and tuples in Python?
在 Python 中,列表和元组有什么主要的区别?
## --answers--
Tuples are immutable.
元组是不可改变的。
---
Lists are ordered.
列表是有顺序的。
---
Tuples are unordered.
元组是无序的。
## --video-solution--

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c165
title: Python Introduction
title: Python 简介
challengeType: 11
videoId: PrQV9JkLhb4
dashedName: python-introduction
@ -8,34 +8,34 @@ dashedName: python-introduction
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
更多资源:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/ds-content-python-under-10-minutes)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/ds-content-python-under-10-minutes)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
How do we define blocks of code in the body of functions in Python?
我们如何在 Python 函数中定义代码块?
## --answers--
We use a set of curly braces, one on either side of each new block of our code.
我们可以在代码的每个新区块的两侧使用一组大括号。
---
We use indentation, usually right-aligned 4 spaces.
我们使用缩进,通常是右对齐的 4 个空格。
---
We do not denote blocks of code.
我们不用指示出代码块。
---
We could use curly braces or indentation to denote blocks of code.
我们可以使用大括号或缩进来指示出代码块。
## --video-solution--

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c167
title: Python Iteration and Modules
title: Python 迭代和模块
challengeType: 11
videoId: XzosGWLafrY
dashedName: python-iteration-and-modules
@ -8,18 +8,18 @@ dashedName: python-iteration-and-modules
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
更多资源:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/ds-content-python-under-10-minutes)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/ds-content-python-under-10-minutes)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
How would you iterate over and print the keys and values of a dictionary named `user`?
您将如何迭代并打印名为 `user` 的字典的键和值?
## --answers--

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c162
title: Reading Data CSV and TXT
title: CSV TXT 中读取数据
challengeType: 11
videoId: ViGEv0zOzUk
dashedName: reading-data-csv-and-txt
@ -8,18 +8,18 @@ dashedName: reading-data-csv-and-txt
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
以下有更多的资料:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/RDP-Reading-Data-with-Python-and-Pandas)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/RDP-Reading-Data-with-Python-and-Pandas/tree/master/unit-1-reading-data-with-python-and-pandas/lesson-1-reading-csv-and-txt-files/files)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
How would you import the CSV file `data.csv` and store it in a DataFrame using the Pandas module?
你如何使用 Pandas 模块导入 CSV 文件 `data.csv` 并且存储到 DataFrame 中?
## --answers--

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c163
title: Reading Data from Databases
title: 从数据库中读取数据
challengeType: 11
videoId: MtgXS1MofRw
dashedName: reading-data-from-databases
@ -8,30 +8,30 @@ dashedName: reading-data-from-databases
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
以下有更多的资料
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/RDP-Reading-Data-with-Python-and-Pandas)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/RDP-Reading-Data-with-Python-and-Pandas/tree/master/unit-1-reading-data-with-python-and-pandas/lesson-11-reading-data-from-relational-databases/files)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
What method does a `Cursor` instance have and what does it allow?
`Cursor` 实例中都有什么方法,这些方法能用来做什么?
## --answers--
The `Cursor` instance has a `.run()` method which allows you to run SQL queries.
`Cursor` 实例中有方法 `.run()` ,它允许你运行 SQL 查询语句。
---
The `Cursor` instance has a `.select()` method which allows you to select records.
`Cursor` 实例中有方法 `.select()` ,它允许你选择记录。
---
The `Cursor` instance has an `.execute()` method which will receive SQL parameters to run against the database.
`Cursor` 实例有方法 `.execute()` 它能够接收在数据库中运行的 SQL 参数。
## --video-solution--

View File

@ -1,6 +1,6 @@
---
id: 5e9a093a74c4063ca6f7c161
title: Reading Data Introduction
title: 读取数据简介
challengeType: 11
videoId: cDnt02BcHng
dashedName: reading-data-introduction
@ -8,18 +8,18 @@ dashedName: reading-data-introduction
# --description--
*Instead of using notebooks.ai like it shows in the video, you can use Google Colab instead.*
*在视频中我们使用的编辑器工具是在 notebook.ai 这个平台,你也可以选择用其他的平台,比如说 Google Colab 也是一个不错的选择。*
More resources:
以下有更多的资料:
- [Notebooks on GitHub](https://github.com/ine-rmotr-curriculum/RDP-Reading-Data-with-Python-and-Pandas)
- [How to open Notebooks from GitHub using Google Colab.](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
- [在 GitHub 平台的 Notebooks](https://github.com/ine-rmotr-curriculum/RDP-Reading-Data-with-Python-and-Pandas/tree/master/unit-1-reading-data-with-python-and-pandas/lesson-1-reading-csv-and-txt-files/files)
- [如何使用 Google Colab 来打开 GitHub 上的 Notebooks](https://colab.research.google.com/github/googlecolab/colabtools/blob/master/notebooks/colab-github-demo.ipynb)
# --question--
## --text--
Given a file named `certificates.csv` with these contents:
文件 `certificates.csv` 有以下内容:
<pre>
Name$Certificates$Time (in months)
@ -29,7 +29,7 @@ Ahmad$5$9
Beau$6$12
</pre>
Fill in the blanks for the missing arguments below:
请填写以下缺失的参数:
```py
import csv

View File

@ -1,23 +1,24 @@
---
id: 5e46f7e5ac417301a38fb929
title: Demographic Data Analyzer
title: 人口统计数据分析器
challengeType: 10
forumTopicId: 462367
dashedName: demographic-data-analyzer
---
# --description--
In this challenge you must analyze demographic data using Pandas. You are given a dataset of demographic data that was extracted from the 1994 Census database.
在这个挑战中,你必须使用 Pandas 对人口统计进行分析。 你将获得从 1994 年人口普查数据库中提取的人口统计数据数据集。
You can access [the full project description and starter code on Repl.it](https://repl.it/github/freeCodeCamp/boilerplate-demographic-data-analyzer).
你可以[ Replit 上查看整个项目的具体描述和初始代码](https://replit.com/github/freeCodeCamp/boilerplate-demographic-data-analyzer)
After going to that link, fork the project. Once you complete the project based on the instructions in 'README.md', submit your project link below.
点击此链接fork 这个项目。 一旦你根据 “README.md” 中的说明完成项目,请提交你的项目链接到下面。
We are still developing the interactive instructional part of the data analysis with Python curriculum. For now, you will have to use other resources to learn how to pass this challenge.
我们仍在开发 Python 数据分析课程的交互式教学。 现在,你需要使用其他资源来学习如何通过这一挑战。
# --hints--
It should pass all Python tests.
它应该通过所有的 Python 测试。
```js

View File

@ -1,23 +1,24 @@
---
id: 5e46f7f8ac417301a38fb92a
title: Medical Data Visualizer
title: 医疗数据可视化工具
challengeType: 10
forumTopicId: 462368
dashedName: medical-data-visualizer
---
# --description--
In this project, you will visualize and make calculations from medical examination data using matplotlib, seaborn, and pandas.
在这个项目中,你将要使用 matplotlibseaborn pandas 来对健康检查数据进行数据可视化和计算。
You can access [the full project description and starter code on Repl.it](https://repl.it/github/freeCodeCamp/boilerplate-medical-data-visualizer).
你可以[ Replit 上查看整个项目的具体描述和初始代码](https://replit.com/github/freeCodeCamp/boilerplate-medical-data-visualizer)
After going to that link, fork the project. Once you complete the project based on the instructions in 'README.md', submit your project link below.
打开此链接后fork 这个项目。 一旦你根据 “README.md” 中的说明完成项目,请提交你的项目到下面的链接。
We are still developing the interactive instructional part of the data analysis with Python curriculum. For now, you will have to use other resources to learn how to pass this challenge.
我们仍在开发 Python 数据分析课程的交互式课程部分。 现在,你需要使用其他资源来学习如何通过这一挑战。
# --hints--
It should pass all Python tests.
它应该通过所有的 Python 测试。
```js

View File

@ -1,23 +1,24 @@
---
id: 5e46f802ac417301a38fb92b
title: Page View Time Series Visualizer
title: 页面访问量的时间序列可视化工具
challengeType: 10
forumTopicId: 462369
dashedName: page-view-time-series-visualizer
---
# --description--
For this project you will visualize time series data using a line chart, bar chart, and box plots. You will use Pandas, matplotlib, and seaborn to visualize a dataset containing the number of page views each day on the freeCodeCamp.org forum from 2016-05-09 to 2019-12-03. The data visualizations will help you understand the patterns in visits and identify yearly and monthly growth.
对于这个项目,你将使用线图、条形图和箱形图对时间序列数据进行可视化。 你将要使用 Pandasmatplotlib seaborn 来对数据集进行可视化,这个数据集包含从 2016-05-09 2019-12-03 每一天在 freeCodeCamp.org 论坛的页面访问量。 这个数据可视化将帮助你了解访问的模式,并且显示年增长和月增长情况。
You can access [the full project description and starter code on Repl.it](https://repl.it/github/freeCodeCamp/boilerplate-page-view-time-series-visualizer).
你可以 [ Replit 上查看整个项目的具体描述和初始代码](https://replit.com/github/freeCodeCamp/boilerplate-page-view-time-series-visualizer)
After going to that link, fork the project. Once you complete the project based on the instructions in 'README.md', submit your project link below.
点击此链接fork 这个项目。 一旦你根据 “README.md” 中的说明完成项目,请提交你的项目到下面的链接。
We are still developing the interactive instructional part of the data analysis with Python curriculum. For now, you will have to use other resources to learn how to pass this challenge.
我们仍在开发 Python 数据分析课程的交互式课程部分。 现在,你将需要使用其他资源来学习如何通过这一挑战。
# --hints--
It should pass all Python tests.
它应该通过所有的 Python 测试。
```js

View File

@ -1,23 +1,24 @@
---
id: 5e4f5c4b570f7e3a4949899f
title: Sea Level Predictor
title: 海平面预报器
challengeType: 10
forumTopicId: 462370
dashedName: sea-level-predictor
---
# --description--
In this project, you will analyze a dataset of the global average sea level change since 1880. You will use the data to predict the sea level change through year 2050.
在本项目中,您将分析自 1880 年以来全球平均海平面变化的数据集。 您将使用这些数据来预测到 2050 年的海平面变化。
You can access [the full project description and starter code on Repl.it](https://repl.it/github/freeCodeCamp/boilerplate-sea-level-predictor).
你可以在 [Replit 上查看整个项目的具体描述和初始代码](https://replit.com/github/freeCodeCamp/boilerplate-sea-level-predictor)
After going to that link, fork the project. Once you complete the project based on the instructions in 'README.md', submit your project link below.
打开此链接后fork 这个项目。 一旦你根据 “README.md” 中的说明完成项目,请提交你的项目到下面的链接。
We are still developing the interactive instructional part of the data analysis with Python curriculum. For now, you will have to use other resources to learn how to pass this challenge.
我们仍在开发 Python 数据分析课程的交互式课程部分。 现在,你需要使用其他资源来学习如何通过这一挑战。
# --hints--
It should pass all Python tests.
它应该通过所有的 Python 测试。
```js

View File

@ -1,6 +1,6 @@
---
id: 5e9a0a8e09c5df3cc3600ed4
title: 'Accessing and Changing Elements, Rows, Columns'
title: '访问与更改元素、行和列'
challengeType: 11
videoId: v-7Y7koJ_N0
dashedName: accessing-and-changing-elements-rows-columns
@ -10,7 +10,7 @@ dashedName: accessing-and-changing-elements-rows-columns
## --text--
What code would change the values in the 3rd column of both of the following Numpy arrays to 20?
以下哪行代码将下面的 Numpy 数组的第三行的数值都更改成 20
```py
a = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])

View File

@ -1,6 +1,6 @@
---
id: 5e9a0a8e09c5df3cc3600ed3
title: Basics of Numpy
title: Numpy 的基础知识
challengeType: 11
videoId: f9QrZrKQMLI
dashedName: basics-of-numpy
@ -10,7 +10,7 @@ dashedName: basics-of-numpy
## --text--
What will the following code print?
以下代码将打印出什么?
```python
b = np.array([[1.0,2.0,3.0],[3.0,4.0,5.0]])

View File

@ -1,6 +1,6 @@
---
id: 5e9a0a8e09c5df3cc3600ed7
title: Copying Arrays Warning
title: 复制数组警告
challengeType: 11
videoId: iIoQ0_L0GvA
dashedName: copying-arrays-warning
@ -10,7 +10,7 @@ dashedName: copying-arrays-warning
## --text--
What is the value of `a` after running the following code?
运行以下代码后, `a` 的值是多少?
```py
import numpy as np

View File

@ -1,6 +1,6 @@
---
id: 5e9a0a8e09c5df3cc3600ed6
title: Initialize Array Problem
title: 初始化数组问题
challengeType: 11
videoId: 0jGfH8BPfOk
dashedName: initialize-array-problem
@ -10,7 +10,7 @@ dashedName: initialize-array-problem
## --text--
What is another way to produce the following array?
产生以下数组的另一种方式是什么?
```py
[[0. 0. 0. 0. 0. 0. 0.]

View File

@ -1,6 +1,6 @@
---
id: 5e9a0a8e09c5df3cc3600ed5
title: Initializing Different Arrays
title: 初始化不同的数组
challengeType: 11
videoId: CEykdsKT4U4
dashedName: initializing-different-arrays
@ -10,7 +10,7 @@ dashedName: initializing-different-arrays
## --text--
What will the following code print?
以下代码将打印出什么?
```py
a = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])

View File

@ -1,6 +1,6 @@
---
id: 5e9a0a8e09c5df3cc3600ed8
title: Mathematics
title: 数学
challengeType: 11
videoId: 7txegvyhtVk
dashedName: mathematics
@ -10,7 +10,7 @@ dashedName: mathematics
## --text--
What is the value of `b` after running the following code?
运行以下代码后, `b` 的值是多少?
```py
import numpy as np

View File

@ -1,6 +1,6 @@
---
id: 5e9a0a8e09c5df3cc3600ed9
title: Reorganizing Arrays
title: 重组数组
challengeType: 11
videoId: VNWAQbEM-C8
dashedName: reorganizing-arrays
@ -10,7 +10,7 @@ dashedName: reorganizing-arrays
## --text--
What code would produce the following array?
哪个代码会生成下面的数组?
```py
[[1. 1.]