chore(i18n,chn): manually downloaded curriculum (#42858)
This commit is contained in:
committed by
GitHub
parent
eef1805fe6
commit
7eb0630f2d
@ -1,23 +1,24 @@
|
||||
---
|
||||
id: 5e46f7e5ac417301a38fb929
|
||||
title: Demographic Data Analyzer
|
||||
title: 人口统计数据分析器
|
||||
challengeType: 10
|
||||
forumTopicId: 462367
|
||||
dashedName: demographic-data-analyzer
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
In this challenge you must analyze demographic data using Pandas. You are given a dataset of demographic data that was extracted from the 1994 Census database.
|
||||
在这个挑战中,你必须使用 Pandas 对人口统计进行分析。 你将获得从 1994 年人口普查数据库中提取的人口统计数据数据集。
|
||||
|
||||
You can access [the full project description and starter code on Repl.it](https://repl.it/github/freeCodeCamp/boilerplate-demographic-data-analyzer).
|
||||
你可以[在 Replit 上查看整个项目的具体描述和初始代码](https://replit.com/github/freeCodeCamp/boilerplate-demographic-data-analyzer)。
|
||||
|
||||
After going to that link, fork the project. Once you complete the project based on the instructions in 'README.md', submit your project link below.
|
||||
点击此链接,fork 这个项目。 一旦你根据 “README.md” 中的说明完成项目,请提交你的项目链接到下面。
|
||||
|
||||
We are still developing the interactive instructional part of the data analysis with Python curriculum. For now, you will have to use other resources to learn how to pass this challenge.
|
||||
我们仍在开发 Python 数据分析课程的交互式教学。 现在,你需要使用其他资源来学习如何通过这一挑战。
|
||||
|
||||
# --hints--
|
||||
|
||||
It should pass all Python tests.
|
||||
它应该通过所有的 Python 测试。
|
||||
|
||||
```js
|
||||
|
||||
|
@ -1,23 +1,24 @@
|
||||
---
|
||||
id: 5e46f7f8ac417301a38fb92a
|
||||
title: Medical Data Visualizer
|
||||
title: 医疗数据可视化工具
|
||||
challengeType: 10
|
||||
forumTopicId: 462368
|
||||
dashedName: medical-data-visualizer
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
In this project, you will visualize and make calculations from medical examination data using matplotlib, seaborn, and pandas.
|
||||
在这个项目中,你将要使用 matplotlib,seaborn 和 pandas 来对健康检查数据进行数据可视化和计算。
|
||||
|
||||
You can access [the full project description and starter code on Repl.it](https://repl.it/github/freeCodeCamp/boilerplate-medical-data-visualizer).
|
||||
你可以[在 Replit 上查看整个项目的具体描述和初始代码](https://replit.com/github/freeCodeCamp/boilerplate-medical-data-visualizer)。
|
||||
|
||||
After going to that link, fork the project. Once you complete the project based on the instructions in 'README.md', submit your project link below.
|
||||
打开此链接后,fork 这个项目。 一旦你根据 “README.md” 中的说明完成项目,请提交你的项目到下面的链接。
|
||||
|
||||
We are still developing the interactive instructional part of the data analysis with Python curriculum. For now, you will have to use other resources to learn how to pass this challenge.
|
||||
我们仍在开发 Python 数据分析课程的交互式课程部分。 现在,你需要使用其他资源来学习如何通过这一挑战。
|
||||
|
||||
# --hints--
|
||||
|
||||
It should pass all Python tests.
|
||||
它应该通过所有的 Python 测试。
|
||||
|
||||
```js
|
||||
|
||||
|
@ -1,23 +1,24 @@
|
||||
---
|
||||
id: 5e46f802ac417301a38fb92b
|
||||
title: Page View Time Series Visualizer
|
||||
title: 页面访问量的时间序列可视化工具
|
||||
challengeType: 10
|
||||
forumTopicId: 462369
|
||||
dashedName: page-view-time-series-visualizer
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
For this project you will visualize time series data using a line chart, bar chart, and box plots. You will use Pandas, matplotlib, and seaborn to visualize a dataset containing the number of page views each day on the freeCodeCamp.org forum from 2016-05-09 to 2019-12-03. The data visualizations will help you understand the patterns in visits and identify yearly and monthly growth.
|
||||
对于这个项目,你将使用线图、条形图和箱形图对时间序列数据进行可视化。 你将要使用 Pandas、matplotlib 和 seaborn 来对数据集进行可视化,这个数据集包含从 2016-05-09 到 2019-12-03 每一天在 freeCodeCamp.org 论坛的页面访问量。 这个数据可视化将帮助你了解访问的模式,并且显示年增长和月增长情况。
|
||||
|
||||
You can access [the full project description and starter code on Repl.it](https://repl.it/github/freeCodeCamp/boilerplate-page-view-time-series-visualizer).
|
||||
你可以 [在 Replit 上查看整个项目的具体描述和初始代码](https://replit.com/github/freeCodeCamp/boilerplate-page-view-time-series-visualizer)。
|
||||
|
||||
After going to that link, fork the project. Once you complete the project based on the instructions in 'README.md', submit your project link below.
|
||||
点击此链接,fork 这个项目。 一旦你根据 “README.md” 中的说明完成项目,请提交你的项目到下面的链接。
|
||||
|
||||
We are still developing the interactive instructional part of the data analysis with Python curriculum. For now, you will have to use other resources to learn how to pass this challenge.
|
||||
我们仍在开发 Python 数据分析课程的交互式课程部分。 现在,你将需要使用其他资源来学习如何通过这一挑战。
|
||||
|
||||
# --hints--
|
||||
|
||||
It should pass all Python tests.
|
||||
它应该通过所有的 Python 测试。
|
||||
|
||||
```js
|
||||
|
||||
|
@ -1,23 +1,24 @@
|
||||
---
|
||||
id: 5e4f5c4b570f7e3a4949899f
|
||||
title: Sea Level Predictor
|
||||
title: 海平面预报器
|
||||
challengeType: 10
|
||||
forumTopicId: 462370
|
||||
dashedName: sea-level-predictor
|
||||
---
|
||||
|
||||
# --description--
|
||||
|
||||
In this project, you will analyze a dataset of the global average sea level change since 1880. You will use the data to predict the sea level change through year 2050.
|
||||
在本项目中,您将分析自 1880 年以来全球平均海平面变化的数据集。 您将使用这些数据来预测到 2050 年的海平面变化。
|
||||
|
||||
You can access [the full project description and starter code on Repl.it](https://repl.it/github/freeCodeCamp/boilerplate-sea-level-predictor).
|
||||
你可以在 [Replit 上查看整个项目的具体描述和初始代码](https://replit.com/github/freeCodeCamp/boilerplate-sea-level-predictor)。
|
||||
|
||||
After going to that link, fork the project. Once you complete the project based on the instructions in 'README.md', submit your project link below.
|
||||
打开此链接后,fork 这个项目。 一旦你根据 “README.md” 中的说明完成项目,请提交你的项目到下面的链接。
|
||||
|
||||
We are still developing the interactive instructional part of the data analysis with Python curriculum. For now, you will have to use other resources to learn how to pass this challenge.
|
||||
我们仍在开发 Python 数据分析课程的交互式课程部分。 现在,你需要使用其他资源来学习如何通过这一挑战。
|
||||
|
||||
# --hints--
|
||||
|
||||
It should pass all Python tests.
|
||||
它应该通过所有的 Python 测试。
|
||||
|
||||
```js
|
||||
|
||||
|
Reference in New Issue
Block a user