chore(i18n,chn): manually downloaded curriculum (#42858)

This commit is contained in:
Mrugesh Mohapatra
2021-07-15 13:04:11 +05:30
committed by GitHub
parent eef1805fe6
commit 7eb0630f2d
248 changed files with 5645 additions and 2149 deletions

View File

@ -1,23 +1,24 @@
---
id: 5e46f7e5ac417301a38fb929
title: Demographic Data Analyzer
title: 人口统计数据分析器
challengeType: 10
forumTopicId: 462367
dashedName: demographic-data-analyzer
---
# --description--
In this challenge you must analyze demographic data using Pandas. You are given a dataset of demographic data that was extracted from the 1994 Census database.
在这个挑战中,你必须使用 Pandas 对人口统计进行分析。 你将获得从 1994 年人口普查数据库中提取的人口统计数据数据集。
You can access [the full project description and starter code on Repl.it](https://repl.it/github/freeCodeCamp/boilerplate-demographic-data-analyzer).
你可以[ Replit 上查看整个项目的具体描述和初始代码](https://replit.com/github/freeCodeCamp/boilerplate-demographic-data-analyzer)
After going to that link, fork the project. Once you complete the project based on the instructions in 'README.md', submit your project link below.
点击此链接fork 这个项目。 一旦你根据 “README.md” 中的说明完成项目,请提交你的项目链接到下面。
We are still developing the interactive instructional part of the data analysis with Python curriculum. For now, you will have to use other resources to learn how to pass this challenge.
我们仍在开发 Python 数据分析课程的交互式教学。 现在,你需要使用其他资源来学习如何通过这一挑战。
# --hints--
It should pass all Python tests.
它应该通过所有的 Python 测试。
```js

View File

@ -1,23 +1,24 @@
---
id: 5e46f7f8ac417301a38fb92a
title: Medical Data Visualizer
title: 医疗数据可视化工具
challengeType: 10
forumTopicId: 462368
dashedName: medical-data-visualizer
---
# --description--
In this project, you will visualize and make calculations from medical examination data using matplotlib, seaborn, and pandas.
在这个项目中,你将要使用 matplotlibseaborn pandas 来对健康检查数据进行数据可视化和计算。
You can access [the full project description and starter code on Repl.it](https://repl.it/github/freeCodeCamp/boilerplate-medical-data-visualizer).
你可以[ Replit 上查看整个项目的具体描述和初始代码](https://replit.com/github/freeCodeCamp/boilerplate-medical-data-visualizer)
After going to that link, fork the project. Once you complete the project based on the instructions in 'README.md', submit your project link below.
打开此链接后fork 这个项目。 一旦你根据 “README.md” 中的说明完成项目,请提交你的项目到下面的链接。
We are still developing the interactive instructional part of the data analysis with Python curriculum. For now, you will have to use other resources to learn how to pass this challenge.
我们仍在开发 Python 数据分析课程的交互式课程部分。 现在,你需要使用其他资源来学习如何通过这一挑战。
# --hints--
It should pass all Python tests.
它应该通过所有的 Python 测试。
```js

View File

@ -1,23 +1,24 @@
---
id: 5e46f802ac417301a38fb92b
title: Page View Time Series Visualizer
title: 页面访问量的时间序列可视化工具
challengeType: 10
forumTopicId: 462369
dashedName: page-view-time-series-visualizer
---
# --description--
For this project you will visualize time series data using a line chart, bar chart, and box plots. You will use Pandas, matplotlib, and seaborn to visualize a dataset containing the number of page views each day on the freeCodeCamp.org forum from 2016-05-09 to 2019-12-03. The data visualizations will help you understand the patterns in visits and identify yearly and monthly growth.
对于这个项目,你将使用线图、条形图和箱形图对时间序列数据进行可视化。 你将要使用 Pandasmatplotlib seaborn 来对数据集进行可视化,这个数据集包含从 2016-05-09 2019-12-03 每一天在 freeCodeCamp.org 论坛的页面访问量。 这个数据可视化将帮助你了解访问的模式,并且显示年增长和月增长情况。
You can access [the full project description and starter code on Repl.it](https://repl.it/github/freeCodeCamp/boilerplate-page-view-time-series-visualizer).
你可以 [ Replit 上查看整个项目的具体描述和初始代码](https://replit.com/github/freeCodeCamp/boilerplate-page-view-time-series-visualizer)
After going to that link, fork the project. Once you complete the project based on the instructions in 'README.md', submit your project link below.
点击此链接fork 这个项目。 一旦你根据 “README.md” 中的说明完成项目,请提交你的项目到下面的链接。
We are still developing the interactive instructional part of the data analysis with Python curriculum. For now, you will have to use other resources to learn how to pass this challenge.
我们仍在开发 Python 数据分析课程的交互式课程部分。 现在,你将需要使用其他资源来学习如何通过这一挑战。
# --hints--
It should pass all Python tests.
它应该通过所有的 Python 测试。
```js

View File

@ -1,23 +1,24 @@
---
id: 5e4f5c4b570f7e3a4949899f
title: Sea Level Predictor
title: 海平面预报器
challengeType: 10
forumTopicId: 462370
dashedName: sea-level-predictor
---
# --description--
In this project, you will analyze a dataset of the global average sea level change since 1880. You will use the data to predict the sea level change through year 2050.
在本项目中,您将分析自 1880 年以来全球平均海平面变化的数据集。 您将使用这些数据来预测到 2050 年的海平面变化。
You can access [the full project description and starter code on Repl.it](https://repl.it/github/freeCodeCamp/boilerplate-sea-level-predictor).
你可以在 [Replit 上查看整个项目的具体描述和初始代码](https://replit.com/github/freeCodeCamp/boilerplate-sea-level-predictor)
After going to that link, fork the project. Once you complete the project based on the instructions in 'README.md', submit your project link below.
打开此链接后fork 这个项目。 一旦你根据 “README.md” 中的说明完成项目,请提交你的项目到下面的链接。
We are still developing the interactive instructional part of the data analysis with Python curriculum. For now, you will have to use other resources to learn how to pass this challenge.
我们仍在开发 Python 数据分析课程的交互式课程部分。 现在,你需要使用其他资源来学习如何通过这一挑战。
# --hints--
It should pass all Python tests.
它应该通过所有的 Python 测试。
```js