chore(i18n,chn): manually downloaded curriculum (#42858)
This commit is contained in:
committed by
GitHub
parent
eef1805fe6
commit
7eb0630f2d
@ -1,6 +1,6 @@
|
||||
---
|
||||
id: 5e9a0e9ef99a403d019610cc
|
||||
title: Deep Learning Demystified
|
||||
title: 解密深度学习
|
||||
challengeType: 11
|
||||
videoId: bejQ-W9BGJg
|
||||
dashedName: deep-learning-demystified
|
||||
@ -10,23 +10,23 @@ dashedName: deep-learning-demystified
|
||||
|
||||
## --text--
|
||||
|
||||
How should you assign weights to input neurons before training your network for the first time?
|
||||
在你第一次训练你的网络之前,你应该如何给输入层节点分配权重?
|
||||
|
||||
## --answers--
|
||||
|
||||
From smallest to largest.
|
||||
从小到大
|
||||
|
||||
---
|
||||
|
||||
Completely randomly.
|
||||
完全随机的
|
||||
|
||||
---
|
||||
|
||||
Alphabetically.
|
||||
按字母顺序
|
||||
|
||||
---
|
||||
|
||||
None of the above.
|
||||
以上都不对
|
||||
|
||||
## --video-solution--
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
---
|
||||
id: 5e9a0e9ef99a403d019610cd
|
||||
title: How Convolutional Neural Networks work
|
||||
title: 卷积神经网络的工作原理
|
||||
challengeType: 11
|
||||
videoId: Y5M7KH4A4n4
|
||||
dashedName: how-convolutional-neural-networks-work
|
||||
@ -10,19 +10,19 @@ dashedName: how-convolutional-neural-networks-work
|
||||
|
||||
## --text--
|
||||
|
||||
When are Convolutional Neural Networks not useful?
|
||||
卷积神经网络在什么时候是没有用的?
|
||||
|
||||
## --answers--
|
||||
|
||||
If your data can't be made to look like an image, or if you can rearrange elements of your data and it's still just as useful.
|
||||
当数据的组成形式不能像图片存储的数据格式一样,或者说你的数据可以重新排列,它仍然可以被运用到卷积神经网络中。
|
||||
|
||||
---
|
||||
|
||||
If your data is made up of different 2D or 3D images.
|
||||
如果你的数据是由 2D 或者 3D 图片组成的。
|
||||
|
||||
---
|
||||
|
||||
If your data is text or sound based.
|
||||
如果你的数据是基于文本或者音频的形式。
|
||||
|
||||
## --video-solution--
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
---
|
||||
id: 5e9a0e9ef99a403d019610ca
|
||||
title: How Deep Neural Networks Work
|
||||
title: 深度神经网络的工作原理
|
||||
challengeType: 11
|
||||
videoId: zvalnHWGtx4
|
||||
dashedName: how-deep-neural-networks-work
|
||||
@ -10,19 +10,19 @@ dashedName: how-deep-neural-networks-work
|
||||
|
||||
## --text--
|
||||
|
||||
Why is it better to calculate the gradient (slope) directly rather than numerically?
|
||||
相比较数字的计算,为什么深度神经网络可以更好地计算梯度(斜率)?
|
||||
|
||||
## --answers--
|
||||
|
||||
It is computationally expensive to go back through the entire neural network and adjust the weights for each layer of the neural network.
|
||||
通过回溯整个神经网络来更改每一层神经网络的权重,在计算上来说是非常耗时的。
|
||||
|
||||
---
|
||||
|
||||
It is more accurate.
|
||||
它更加准确。
|
||||
|
||||
---
|
||||
|
||||
There is no difference between the two methods.
|
||||
这两种方法之间没有区别。
|
||||
|
||||
## --video-solution--
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
---
|
||||
id: 5e9a0e9ef99a403d019610cb
|
||||
title: Recurrent Neural Networks RNN and Long Short Term Memory LSTM
|
||||
title: 循环神经网络 RNN 和长短期记忆 LSTM
|
||||
challengeType: 11
|
||||
videoId: UVimlsy9eW0
|
||||
dashedName: recurrent-neural-networks-rnn-and-long-short-term-memory-lstm
|
||||
@ -10,19 +10,19 @@ dashedName: recurrent-neural-networks-rnn-and-long-short-term-memory-lstm
|
||||
|
||||
## --text--
|
||||
|
||||
What are the main neural network components that make up a Long Short Term Memory network?
|
||||
构成长短期记忆网络的主要神经网络组件是什么?
|
||||
|
||||
## --answers--
|
||||
|
||||
New information and prediction.
|
||||
新的信息和预测
|
||||
|
||||
---
|
||||
|
||||
Prediction, collected possibilities, and selection.
|
||||
预测、收集的可能性和选择
|
||||
|
||||
---
|
||||
|
||||
Prediction, ignoring, forgetting, and selection.
|
||||
预测、忽视、遗忘和选择
|
||||
|
||||
## --video-solution--
|
||||
|
||||
|
Reference in New Issue
Block a user