diff --git a/challenges/08-coding-interview-questions-and-take-home-assignments/project-euler-problems.json b/challenges/08-coding-interview-questions-and-take-home-assignments/project-euler-problems.json index d853cbee25..a5171fcae0 100644 --- a/challenges/08-coding-interview-questions-and-take-home-assignments/project-euler-problems.json +++ b/challenges/08-coding-interview-questions-and-take-home-assignments/project-euler-problems.json @@ -769,40 +769,33 @@ "type": "bonfire", "title": "Problem 18: Maximum path sum I", "tests": [ - "assert.strictEqual(euler18(), 1074, 'message: euler18() should return 1074.');" + "assert.strictEqual(maximumPathSumI(testTriangle), 23, 'message: maximumPathSumI(testTriangle) should return 23.');", + "assert.strictEqual(maximumPathSumI(numTriangle), 1074, 'message: maximumPathSumI(numTriangle) should return 1074.');" ], - "solutions": [], + "solutions": ["const testTriangle = [[3, 0, 0, 0],\n [7, 4, 0, 0],\n [2, 4, 6, 0],\n [8, 5, 9, 3]];\n\nfunction maximumPathSumI(triangle) {\n let maxSum = triangle.slice();\n\n for (let i = triangle.length - 1; i > 0; i--) {\n let currentRow = maxSum[i];\n let previousRow = maxSum[i - 1];\n const temp = [];\n for (let j = 0; j < i; j++) {\n temp.push(Math.max((currentRow[j] + previousRow[j]), (currentRow[j + 1] + previousRow[j])));\n }\n maxSum[i - 1] = temp;\n maxSum.pop();\n }\n return maxSum[0][0];\n}"], "translations": {}, + "head": [ + "const numTriangle = [[75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [95, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [17, 47, 82, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [18, 35, 87, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [20, 4, 82, 47, 65, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [19, 1, 23, 75, 3, 34, 0, 0, 0, 0, 0, 0, 0, 0, 0], [88, 2, 77, 73, 7, 63, 67, 0, 0, 0, 0, 0, 0, 0, 0], [99, 65, 4, 28, 6, 16, 70, 92, 0, 0, 0, 0, 0, 0, 0], [41, 41, 26, 56, 83, 40, 80, 70, 33, 0, 0, 0, 0, 0, 0], [41, 48, 72, 33, 47, 32, 37, 16, 94, 29, 0, 0, 0, 0, 0], [53, 71, 44, 65, 25, 43, 91, 52, 97, 51, 14, 0, 0, 0, 0], [70, 11, 33, 28, 77, 73, 17, 78, 39, 68, 17, 57, 0, 0, 0], [91, 71, 52, 38, 17, 14, 91, 43, 58, 50, 27, 29, 48, 0, 0], [63, 66, 4, 68, 89, 53, 67, 30, 73, 16, 69, 87, 40, 31, 0], [4, 62, 98, 27, 23, 9, 70, 98, 73, 93, 38, 53, 60, 4, 23]];" + ], "challengeSeed": [ - "function euler18() {", + "function maximumPathSumI(triangle) {", " // Good luck!", " return true;", "}", "", - "euler18();" + "const testTriangle = [[3, 0, 0, 0],", + " [7, 4, 0, 0],", + " [2, 4, 6, 0],", + " [8, 5, 9, 3]];", + "", + "maximumPathSumI(testTriangle);" ], "description": [ "By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.", - "37 4", - "2 4 6", - "8 5 9 3", + "3
7 4
2 4 6
8 5 9 3
", "That is, 3 + 7 + 4 + 9 = 23.", "Find the maximum total from top to bottom of the triangle below:", - "75", - "95 64", - "17 47 82", - "18 35 87 10", - "20 04 82 47 65", - "19 01 23 75 03 34", - "88 02 77 73 07 63 67", - "99 65 04 28 06 16 70 92", - "41 41 26 56 83 40 80 70 33", - "41 48 72 33 47 32 37 16 94 29", - "53 71 44 65 25 43 91 52 97 51 14", - "70 11 33 28 77 73 17 78 39 68 17 57", - "91 71 52 38 17 14 91 43 58 50 27 29 48", - "63 66 04 68 89 53 67 30 73 16 69 87 40 31", - "04 62 98 27 23 09 70 98 73 93 38 53 60 04 23", + "75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
", "NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)" ] },