chore(i18n,learn): processed translations (#45670)
This commit is contained in:
@@ -16,13 +16,17 @@ dashedName: problem-165-intersections
|
||||
|
||||
Розглянемо три сегменти $L_1$, $L_2$та $L_3$:
|
||||
|
||||
$\begin{align} & L_1: (27, 44) \\;\text{to}\\; (12, 32) \\\\ & L_2: (46, 53) \\;\tтекст{to}\\; (17, 62) \\\\ & L_3: (46, 70) \\;\tтекст{to}\\; (22, 40) \\\\ \end{align}$$
|
||||
$\begin{align} & L_1: (27, 44) \\;\text{to}\\; (12, 32) \\\\
|
||||
& L_2: (46, 53) \\;\tтекст{to}\\; (17, 62) \\\\ & L_3: (46, 70) \\;\tтекст{to}\\; (22, 40) \\\\
|
||||
\end{align}$$
|
||||
|
||||
Можна перевірити, що відрізки ліній $L_2$ і $L_3$ мають справжню точку перетину. Ми зазначали, що, якщо одна з кінцевих точок $L_3$: (22, 40) лежить на $L_1$, це не вважається справжньою точкою перетину. $L_1$ і $L_2$ не мають спільної точки. Отже, на трьох відрізках прямої ми знаходимо одну справжню точку перетину.
|
||||
|
||||
Тепер зробімо те саме для 5000 прямих відрізків. З цією метою ми згенеруємо 20000 чисел, використовуючи так званий генератор псевдо-випадкових чисел «Blum Blum Shub».
|
||||
|
||||
$\begin{align} & s_0 = 290797 \\\\ & s_{n + 1} = s_n × s_n (\text{modulo}\\; 50515093) \\\\ & t_n = s_n (\text{modulo}\\; 500) \\\\ \end{align}$
|
||||
$\begin{align} & s_0 = 290797 \\\\
|
||||
& s_{n + 1} = s_n × s_n (\text{modulo}\\; 50515093) \\\\ & t_n = s_n (\text{modulo}\\; 500) \\\\
|
||||
\end{align}$
|
||||
|
||||
Щоб створити кожен відрізок, ми використовуємо чотири послідовних числа $t_n$. Тобто перший відрізок дано:
|
||||
|
||||
|
Reference in New Issue
Block a user