fix(curriculum): rework Project Euler 78 (#42104)
* fix: rework challenge to use argument in function * fix: add solution * fix: improve look and spacing
This commit is contained in:
		@@ -8,7 +8,7 @@ dashedName: problem-78-coin-partitions
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
# --description--
 | 
					# --description--
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Let p(n) represent the number of different ways in which n coins can be separated into piles. For example, five coins can be separated into piles in exactly seven different ways, so p(5)=7.
 | 
					Let ${p}(n)$ represent the number of different ways in which `n` coins can be separated into piles. For example, five coins can be separated into piles in exactly seven different ways, so ${p}(5) = 7$.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
<div style='text-align: center;'>
 | 
					<div style='text-align: center;'>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -22,22 +22,40 @@ Let p(n) represent the number of different ways in which n coins can be separate
 | 
				
			|||||||
| OO   O   O   O    |
 | 
					| OO   O   O   O    |
 | 
				
			||||||
| O   O   O   O   O |
 | 
					| O   O   O   O   O |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
</div>
 | 
					</div><br>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Find the least value of `n` for which p(`n`) is divisible by one million.
 | 
					Find the least value of `n` for which ${p}(n)$ is divisible by `divisor`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# --hints--
 | 
					# --hints--
 | 
				
			||||||
 | 
					
 | 
				
			||||||
`coinPartitions()` should return a number.
 | 
					`coinPartitions(7)` should return a number.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```js
 | 
					```js
 | 
				
			||||||
assert(typeof coinPartitions() === 'number');
 | 
					assert(typeof coinPartitions(7) === 'number');
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
`coinPartitions()` should return 55374.
 | 
					`coinPartitions(7)` should return `5`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```js
 | 
					```js
 | 
				
			||||||
assert.strictEqual(coinPartitions(), 55374);
 | 
					assert.strictEqual(coinPartitions(7), 5);
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					`coinPartitions(10000)` should return `599`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```js
 | 
				
			||||||
 | 
					assert.strictEqual(coinPartitions(10000), 599);
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					`coinPartitions(100000)` should return `11224`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```js
 | 
				
			||||||
 | 
					assert.strictEqual(coinPartitions(100000), 11224);
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					`coinPartitions(1000000)` should return `55374`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```js
 | 
				
			||||||
 | 
					assert.strictEqual(coinPartitions(1000000), 55374);
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# --seed--
 | 
					# --seed--
 | 
				
			||||||
@@ -45,16 +63,41 @@ assert.strictEqual(coinPartitions(), 55374);
 | 
				
			|||||||
## --seed-contents--
 | 
					## --seed-contents--
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```js
 | 
					```js
 | 
				
			||||||
function coinPartitions() {
 | 
					function coinPartitions(divisor) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  return true;
 | 
					  return true;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
coinPartitions();
 | 
					coinPartitions(7);
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# --solutions--
 | 
					# --solutions--
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```js
 | 
					```js
 | 
				
			||||||
// solution required
 | 
					function coinPartitions(divisor) {
 | 
				
			||||||
 | 
					  const partitions = [1];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  let n = 0;
 | 
				
			||||||
 | 
					  while (partitions[n] !== 0) {
 | 
				
			||||||
 | 
					    n++;
 | 
				
			||||||
 | 
					    partitions.push(0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    let i = 0;
 | 
				
			||||||
 | 
					    let pentagonal = 1;
 | 
				
			||||||
 | 
					    while (pentagonal <= n) {
 | 
				
			||||||
 | 
					      const sign = i % 4 > 1 ? -1 : 1;
 | 
				
			||||||
 | 
					      partitions[n] += sign * partitions[n - pentagonal];
 | 
				
			||||||
 | 
					      partitions[n] = partitions[n] % divisor;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      i++;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      let k = Math.floor(i / 2) + 1;
 | 
				
			||||||
 | 
					      if (i % 2 !== 0) {
 | 
				
			||||||
 | 
					        k *= -1;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					      pentagonal = Math.floor((k * (3 * k - 1)) / 2);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  return n;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user