chore(i18n,curriculum): update translations (#44138)

This commit is contained in:
camperbot
2021-11-06 08:56:52 -07:00
committed by GitHub
parent 09b1592a53
commit 9385d7997b
69 changed files with 685 additions and 619 deletions

View File

@@ -1,6 +1,6 @@
---
id: 5900f3ec1000cf542c50fefe
title: 'Problem 127: abc-hits'
title: 'Problema 127: Trio abc'
challengeType: 5
forumTopicId: 301754
dashedName: problem-127-abc-hits
@@ -8,38 +8,32 @@ dashedName: problem-127-abc-hits
# --description--
The radical of n, rad(n), is the product of distinct prime factors of n. For example, 504 = 23 × 32 × 7, so rad(504) = 2 × 3 × 7 = 42.
O radical de $n$, $rad(n)$, é o produto dos fatores primos distintos de $n$. Por exemplo, $504 = 2^3 × 3^2 × 7$, então $rad(504) = 2 × 3 × 7 = 42$.
We shall define the triplet of positive integers (a, b, c) to be an abc-hit if:
Definiremos o trio de números inteiros positivos (a, b, c) como sendo um trio abc se:
GCD(a, b) = GCD(a, c) = GCD(b, c) = 1
1. $GCD(a, b) = GCD(a, c) = GCD(b, c) = 1$
2. $a < b$
3. $a + b = c$
4. $rad(abc) < c$
a < b
Por exemplo, (5, 27, 32) é um trio abc, pois:
a + b = c
1. $GCD(5, 27) = GCD(5, 32) = GCD(27, 32) = 1$
2. $5 < 27$
3. $5 + 27 = 32$
4. $rad(4320) = 30 < 32$
rad(abc) < c
Ocorre que os trios abc são bastante raros e há somente 31 deles para $c < 1000$, com a $\sum{c} = 12523$.
For example, (5, 27, 32) is an abc-hit, because:
GCD(5, 27) = GCD(5, 32) = GCD(27, 32) = 1
5 < 27
5 + 27 = 32
rad(4320) = 30 < 32
It turns out that abc-hits are quite rare and there are only thirty-one abc-hits for c < 1000, with ∑c = 12523.
Find ∑c for c < 120000.
Encontre a $\sum{c}$ para $c < 120000$.
# --hints--
`euler127()` should return 18407904.
`abcHits()` deve retornar `18407904`.
```js
assert.strictEqual(euler127(), 18407904);
assert.strictEqual(abcHits(), 18407904);
```
# --seed--
@@ -47,12 +41,12 @@ assert.strictEqual(euler127(), 18407904);
## --seed-contents--
```js
function euler127() {
function abcHits() {
return true;
}
euler127();
abcHits();
```
# --solutions--