fix(curriculum): rework Project Euler 38 (#42321)
* fix: rework challenge to use argument in function * fix: update solution to challenge changes * fix: use MathJax to improve look of math notation
This commit is contained in:
@ -10,30 +10,36 @@ dashedName: problem-38-pandigital-multiples
|
|||||||
|
|
||||||
Take the number 192 and multiply it by each of 1, 2, and 3:
|
Take the number 192 and multiply it by each of 1, 2, and 3:
|
||||||
|
|
||||||
<div style='margin-left: 4em;'>
|
$$\begin{align}
|
||||||
192 × 1 = 192<br>
|
192 × 1 = 192\\\\
|
||||||
192 × 2 = 384<br>
|
192 × 2 = 384\\\\
|
||||||
192 × 3 = 576<br>
|
192 × 3 = 576\\\\
|
||||||
</div>
|
\end{align}$$
|
||||||
|
|
||||||
By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the concatenated product of 192 and (1, 2, 3).
|
By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the concatenated product of 192 and (1, 2, 3).
|
||||||
|
|
||||||
The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645, which is the concatenated product of 9 and (1, 2, 3, 4, 5).
|
The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645, which is the concatenated product of 9 and (1, 2, 3, 4, 5).
|
||||||
|
|
||||||
What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product of an integer with (1, 2, ... , `n`) where `n` > 1?
|
What is the largest 1 to `k` pandigital `k`-digit number that can be formed as the concatenated product of an integer with (1, 2, ..., `n`) where `n` > 1?
|
||||||
|
|
||||||
# --hints--
|
# --hints--
|
||||||
|
|
||||||
`pandigitalMultiples()` should return a number.
|
`pandigitalMultiples(8)` should return a number.
|
||||||
|
|
||||||
```js
|
```js
|
||||||
assert(typeof pandigitalMultiples() === 'number');
|
assert(typeof pandigitalMultiples(8) === 'number');
|
||||||
```
|
```
|
||||||
|
|
||||||
`pandigitalMultiples()` should return 932718654.
|
`pandigitalMultiples(8)` should return `78156234`.
|
||||||
|
|
||||||
```js
|
```js
|
||||||
assert.strictEqual(pandigitalMultiples(), 932718654);
|
assert.strictEqual(pandigitalMultiples(8), 78156234);
|
||||||
|
```
|
||||||
|
|
||||||
|
`pandigitalMultiples(9)` should return `932718654`.
|
||||||
|
|
||||||
|
```js
|
||||||
|
assert.strictEqual(pandigitalMultiples(9), 932718654);
|
||||||
```
|
```
|
||||||
|
|
||||||
# --seed--
|
# --seed--
|
||||||
@ -41,38 +47,37 @@ assert.strictEqual(pandigitalMultiples(), 932718654);
|
|||||||
## --seed-contents--
|
## --seed-contents--
|
||||||
|
|
||||||
```js
|
```js
|
||||||
function pandigitalMultiples() {
|
function pandigitalMultiples(k) {
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
pandigitalMultiples();
|
pandigitalMultiples(8);
|
||||||
```
|
```
|
||||||
|
|
||||||
# --solutions--
|
# --solutions--
|
||||||
|
|
||||||
```js
|
```js
|
||||||
function pandigitalMultiples() {
|
function pandigitalMultiples(k) {
|
||||||
|
function getKDigitConcatenatedProduct(num, k) {
|
||||||
function get9DigitConcatenatedProduct(num) {
|
// returns false if concatenated product is not k digits
|
||||||
// returns false if concatenated product is not 9 digits
|
|
||||||
let concatenatedProduct = num.toString();
|
let concatenatedProduct = num.toString();
|
||||||
for (let i = 2; concatenatedProduct.length < 9; i++) {
|
for (let i = 2; concatenatedProduct.length < k; i++) {
|
||||||
concatenatedProduct += num * i;
|
concatenatedProduct += num * i;
|
||||||
}
|
}
|
||||||
return concatenatedProduct.length === 9 ? concatenatedProduct : false;
|
return concatenatedProduct.length === k ? concatenatedProduct : false;
|
||||||
}
|
}
|
||||||
|
|
||||||
function is1to9Pandigital(num) {
|
function is1toKPandigital(num, k) {
|
||||||
const numStr = num.toString();
|
const numStr = num.toString();
|
||||||
|
|
||||||
// check if length is not 9
|
// check if length is not k
|
||||||
if (numStr.length !== 9) {
|
if (numStr.length !== k) {
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
// check if pandigital
|
// check if pandigital
|
||||||
for (let i = 9; i > 0; i--) {
|
for (let i = k; i > 0; i--) {
|
||||||
if (numStr.indexOf(i.toString()) === -1) {
|
if (numStr.indexOf(i.toString()) === -1) {
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
@ -81,11 +86,13 @@ function pandigitalMultiples() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
let largestNum = 0;
|
let largestNum = 0;
|
||||||
for (let i = 9999; i >= 9000; i--) {
|
for (let i = 10 ** Math.floor(k / 2) + 1; i >= 1; i--) {
|
||||||
const concatenatedProduct = get9DigitConcatenatedProduct(i);
|
const concatenatedProduct = getKDigitConcatenatedProduct(i, k);
|
||||||
if (is1to9Pandigital(concatenatedProduct) && concatenatedProduct > largestNum) {
|
if (is1toKPandigital(concatenatedProduct, k)) {
|
||||||
largestNum = parseInt(concatenatedProduct);
|
const number = parseInt(concatenatedProduct, 10);
|
||||||
break;
|
if (number > largestNum) {
|
||||||
|
largestNum = number;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return largestNum;
|
return largestNum;
|
||||||
|
Reference in New Issue
Block a user