@ -65,6 +65,19 @@ function gcd(a, b) {
|
||||
}
|
||||
```
|
||||
|
||||
C++ Code to Perform GCD-
|
||||
```csharp
|
||||
int gcd(int a,int b) {
|
||||
int R;
|
||||
while ((a % b) > 0) {
|
||||
R = a % b;
|
||||
a = b;
|
||||
b = R;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
```
|
||||
|
||||
Python Code to Perform GCD using Recursion
|
||||
```Python
|
||||
def gcd(a, b):
|
||||
@ -87,7 +100,6 @@ static int gcd(int a, int b)
|
||||
|
||||
```
|
||||
|
||||
|
||||
You can also use the Euclidean Algorithm to find GCD of more than two numbers.
|
||||
Since, GCD is associative, the following operation is valid- `GCD(a,b,c) == GCD(GCD(a,b), c)`
|
||||
|
||||
|
Reference in New Issue
Block a user