chore(learn): Applied MDX format to Chinese curriculum files (#40462)
This commit is contained in:
@@ -4,30 +4,34 @@ challengeType: 11
|
||||
videoId: 5Nwfs5Ej85Q
|
||||
---
|
||||
|
||||
## Description
|
||||
# --question--
|
||||
|
||||
<section id='description'>
|
||||
</section>
|
||||
## --text--
|
||||
|
||||
## Tests
|
||||
Why are Numpy arrays faster than regular Python lists?
|
||||
|
||||
<section id='tests'>
|
||||
## --answers--
|
||||
|
||||
```yml
|
||||
question:
|
||||
text: |
|
||||
Why are Numpy arrays faster than regular Python lists?
|
||||
Numpy does not perform type checking while iterating through objects.
|
||||
|
||||
answers:
|
||||
- |
|
||||
Numpy does not perform type checking while iterating through objects.
|
||||
- |
|
||||
Numpy uses fixed types.
|
||||
- |
|
||||
Numpy uses contiguous memory.
|
||||
- |
|
||||
All of the above.
|
||||
solution: 4
|
||||
```
|
||||
---
|
||||
|
||||
Numpy uses fixed types.
|
||||
|
||||
---
|
||||
|
||||
Numpy uses contiguous memory.
|
||||
|
||||
---
|
||||
|
||||
All of the above.
|
||||
|
||||
## --video-solution--
|
||||
|
||||
4
|
||||
|
||||
# --hints--
|
||||
|
||||
|
||||
# --solutions--
|
||||
|
||||
</section>
|
||||
|
Reference in New Issue
Block a user