diff --git a/guide/english/data-science-tools/scikit/index.md b/guide/english/data-science-tools/scikit/index.md index 1aa281d7ac..a9e8fa7a1a 100644 --- a/guide/english/data-science-tools/scikit/index.md +++ b/guide/english/data-science-tools/scikit/index.md @@ -50,8 +50,16 @@ km.predict(test). In case of supervised learning the quality of the results can be determined. scikit-learn offers methods like [r2_score](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html) or [accuracy_score](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html). -## References +## Popular models provided by scikit-learn +* Clustering +* Ensemble Methods +* Support Vector Machines +* Nearest Neighbors +* Naive Bayes +* Decision Trees +* Neural Networks -Scikit-learn main page: http://scikit-learn.org/stable/ -Tutorials: http://scikit-learn.org/stable/tutorial/index.html +#### More Information +- [Scikit-learn main page](http://scikit-learn.org/stable/) +- [Tutorials](http://scikit-learn.org/stable/tutorial/index.html)