chore(i18n,learn): processed translations (#45583)
This commit is contained in:
@ -18,17 +18,21 @@ Sia $A = 1\\,415\\,926\\,535$, $B = 8\\,979\\,323\\,846$. Vogliamo trovare, dici
|
||||
|
||||
I primi termini di $F_{A,B}$ sono:
|
||||
|
||||
$$\begin{align} & 1\\,415\\,926\\,535 \\\\ & 8\\,979\\,323\\,846 \\\\ & 14\\,159\\,265\\,358\\,979\\,323\\,846 \\\\ & 897\\,932\\,384\\,614\\,159\\,265\\,358\\,979\\,323\\,846 \\\\ & 14\\,159\\,265\\,358\\,979\\,323\\,846\\,897\\,932\\,384\\,614\\,15\color{red}{9}\\,265\\,358\\,979\\,323\\,846 \end{align}$$
|
||||
$$\begin{align} & 1\\,415\\,926\\,535 \\\\
|
||||
& 8\\,979\\,323\\,846 \\\\ & 14\\,159\\,265\\,358\\,979\\,323\\,846 \\\\
|
||||
& 897\\,932\\,384\\,614\\,159\\,265\\,358\\,979\\,323\\,846 \\\\ & 14\\,159\\,265\\,358\\,979\\,323\\,846\\,897\\,932\\,384\\,614\\,15\color{red}{9}\\,265\\,358\\,979\\,323\\,846 \end{align}$$
|
||||
|
||||
Allora $D_{A,B}(35)$ è la ${35}$-sima cifra nel qunto termine, che è 9.
|
||||
|
||||
Ora utilizziamo per $A$ le prime 100 cifre di $π$ dietro il punto decimale:
|
||||
|
||||
$$\begin{align} & 14\\,159\\,265\\,358\\,979\\,323\\,846\\,264\\,338\\,327\\,950\\,288\\,419\\,716\\,939\\,937\\,510 \\\\ & 58\\,209\\,749\\,445\\,923\\,078\\,164\\,062\\,862\\,089\\,986\\,280\\,348\\,253\\,421\\,170\\,679 \end{align}$$
|
||||
$$\begin{align} & 14\\,159\\,265\\,358\\,979\\,323\\,846\\,264\\,338\\,327\\,950\\,288\\,419\\,716\\,939\\,937\\,510 \\\\
|
||||
& 58\\,209\\,749\\,445\\,923\\,078\\,164\\,062\\,862\\,089\\,986\\,280\\,348\\,253\\,421\\,170\\,679 \end{align}$$
|
||||
|
||||
e per $B$ le prossime cento cifre:
|
||||
|
||||
$$\begin{align} & 82\\,148\\,086\\,513\\,282\\,306\\,647\\,093\\,844\\,609\\,550\\,582\\,231\\,725\\,359\\,408\\,128 \\\\ & 48\\,111\\,745\\,028\\,410\\,270\\,193\\,852\\,110\\,555\\,964\\,462\\,294\\,895\\,493\\,038\\,196 \end{align}$$
|
||||
$$\begin{align} & 82\\,148\\,086\\,513\\,282\\,306\\,647\\,093\\,844\\,609\\,550\\,582\\,231\\,725\\,359\\,408\\,128 \\\\
|
||||
& 48\\,111\\,745\\,028\\,410\\,270\\,193\\,852\\,110\\,555\\,964\\,462\\,294\\,895\\,493\\,038\\,196 \end{align}$$
|
||||
|
||||
Trova $\sum_{n = 0, 1, \ldots, 17} {10}^n × D_{A,B}((127 + 19n) × 7^n)$.
|
||||
|
||||
|
Reference in New Issue
Block a user