From a6acbe20cc049ddb10cca60c3714408bbb11f0c1 Mon Sep 17 00:00:00 2001 From: gikf <60067306+gikf@users.noreply.github.com> Date: Tue, 11 May 2021 13:33:29 +0200 Subject: [PATCH] fix(curriculum): rework Project Euler 71 (#42006) --- .../problem-71-ordered-fractions.md | 65 +++++++++++++++---- 1 file changed, 54 insertions(+), 11 deletions(-) diff --git a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-71-ordered-fractions.md b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-71-ordered-fractions.md index 3e0d91f5cf..55a2e9b72f 100644 --- a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-71-ordered-fractions.md +++ b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-71-ordered-fractions.md @@ -8,28 +8,52 @@ dashedName: problem-71-ordered-fractions # --description-- -Consider the fraction, `n`/`d`, where `n` and `d` are positive integers. If `n`<`d` and HCF(`n`,`d`)=1, it is called a reduced proper fraction. +Consider the fraction, $\frac{n}{d}$, where `n` and `d` are positive integers. If `n` < `d` and highest common factor, ${{HCF}(n, d)} = 1$, it is called a reduced proper fraction. If we list the set of reduced proper fractions for `d` ≤ 8 in ascending order of size, we get: -
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
+$$\frac{1}{8}, \frac{1}{7}, \frac{1}{6}, \frac{1}{5}, \frac{1}{4}, \frac{2}{7}, \frac{1}{3}, \frac{3}{8}, \frac{\textbf2}{\textbf5}, \frac{3}{7}, \frac{1}{2}, \frac{4}{7}, \frac{3}{5}, \frac{5}{8}, \frac{2}{3}, \frac{5}{7}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \frac{7}{8}$$ -It can be seen that 2/5 is the fraction immediately to the left of 3/7. +It can be seen that $\frac{2}{5}$ is the fraction immediately to the left of $\frac{3}{7}$. -By listing the set of reduced proper fractions for `d` ≤ 1,000,000 in ascending order of size, find the numerator of the fraction immediately to the left of 3/7. +By listing the set of reduced proper fractions for `d` ≤ `limit` in ascending order of size, find the numerator of the fraction immediately to the left of $\frac{3}{7}$. # --hints-- -`orderedFractions()` should return a number. +`orderedFractions(8)` should return a number. ```js -assert(typeof orderedFractions() === 'number'); +assert(typeof orderedFractions(8) === 'number'); ``` -`orderedFractions()` should return 428570. +`orderedFractions(8)` should return `2`. ```js -assert.strictEqual(orderedFractions(), 428570); +assert.strictEqual(orderedFractions(8), 2); +``` + +`orderedFractions(10)` should return `2`. + +```js +assert.strictEqual(orderedFractions(10), 2); +``` + +`orderedFractions(9994)` should return `4283`. + +```js +assert.strictEqual(orderedFractions(9994), 4283); +``` + +`orderedFractions(500000)` should return `214283`. + +```js +assert.strictEqual(orderedFractions(500000), 214283); +``` + +`orderedFractions(1000000)` should return `428570`. + +```js +assert.strictEqual(orderedFractions(1000000), 428570); ``` # --seed-- @@ -37,16 +61,35 @@ assert.strictEqual(orderedFractions(), 428570); ## --seed-contents-- ```js -function orderedFractions() { +function orderedFractions(limit) { return true; } -orderedFractions(); +orderedFractions(8); ``` # --solutions-- ```js -// solution required +function orderedFractions(limit) { + const fractions = []; + const fractionValues = {}; + const highBoundary = 3 / 7; + let lowBoundary = 2 / 7; + + for (let denominator = limit; denominator > 2; denominator--) { + let numerator = Math.floor((3 * denominator - 1) / 7); + let value = numerator / denominator; + if (value > highBoundary || value < lowBoundary) { + continue; + } + fractionValues[value] = [numerator, denominator]; + fractions.push(value); + lowBoundary = value; + } + + fractions.sort(); + return fractionValues[fractions[fractions.length - 1]][0]; +} ```