Fix: Problem 39: Integer right triangles (#38145)
* fix: correct test and add solution I also changed the seed to report the results of an easier example to the user, since just evaluating the function mostly wastes time. * fix: use a better solution * fix: credit original author
This commit is contained in:
committed by
GitHub
parent
158188924b
commit
a7075a579c
@ -24,8 +24,8 @@ For which value of p ≤ n, is the number of solutions maximised?
|
|||||||
tests:
|
tests:
|
||||||
- text: <code>intRightTriangles(500)</code> should return 420.
|
- text: <code>intRightTriangles(500)</code> should return 420.
|
||||||
testString: assert(intRightTriangles(500) == 420);
|
testString: assert(intRightTriangles(500) == 420);
|
||||||
- text: <code>intRightTriangles(800)</code> should return 420.
|
- text: <code>intRightTriangles(800)</code> should return 720.
|
||||||
testString: assert(intRightTriangles(800) == 420);
|
testString: assert(intRightTriangles(800) == 720);
|
||||||
- text: <code>intRightTriangles(900)</code> should return 840.
|
- text: <code>intRightTriangles(900)</code> should return 840.
|
||||||
testString: assert(intRightTriangles(900) == 840);
|
testString: assert(intRightTriangles(900) == 840);
|
||||||
- text: <code>intRightTriangles(1000)</code> should return 840.
|
- text: <code>intRightTriangles(1000)</code> should return 840.
|
||||||
@ -46,7 +46,7 @@ function intRightTriangles(n) {
|
|||||||
return n;
|
return n;
|
||||||
}
|
}
|
||||||
|
|
||||||
intRightTriangles(1000);
|
console.log(intRightTriangles(500)); // 420
|
||||||
```
|
```
|
||||||
|
|
||||||
</div>
|
</div>
|
||||||
@ -59,7 +59,34 @@ intRightTriangles(1000);
|
|||||||
<section id='solution'>
|
<section id='solution'>
|
||||||
|
|
||||||
```js
|
```js
|
||||||
// solution required
|
|
||||||
|
// Original idea for this solution came from
|
||||||
|
// https://www.xarg.org/puzzle/project-euler/problem-39/
|
||||||
|
|
||||||
|
function intRightTriangles(n) {
|
||||||
|
// store the number of triangles with a given perimeter
|
||||||
|
let triangles = {};
|
||||||
|
// a is the shortest side
|
||||||
|
for (let a = 3; a < n / 3; a++)
|
||||||
|
// o is the opposite side and is at least as long as a
|
||||||
|
for (let o = a; o < n / 2; o++) {
|
||||||
|
let h = Math.sqrt(a * a + o * o); // hypotenuse
|
||||||
|
let p = a + o + h; // perimeter
|
||||||
|
if ((h % 1) === 0 && p <= n) {
|
||||||
|
triangles[p] = (triangles[p] || 0) + 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let max = 0, maxp = null;
|
||||||
|
for (let p in triangles) {
|
||||||
|
if (max < triangles[p]) {
|
||||||
|
max = triangles[p];
|
||||||
|
maxp = p;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return maxp;
|
||||||
|
}
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
</section>
|
</section>
|
||||||
|
Reference in New Issue
Block a user