chore(i18n,curriculum): update translations (#44283)

This commit is contained in:
camperbot
2021-11-29 08:32:04 -08:00
committed by GitHub
parent aa9215b111
commit a8b0332720
124 changed files with 1217 additions and 945 deletions

View File

@ -1,6 +1,6 @@
---
id: 5900f5271000cf542c51003a
title: 'Problem 443: GCD sequence'
title: 'Problema 443: Sequencias de máximos divisores comuns'
challengeType: 5
forumTopicId: 302115
dashedName: problem-443-gcd-sequence
@ -8,24 +8,24 @@ dashedName: problem-443-gcd-sequence
# --description--
Let g(n) be a sequence defined as follows: g(4) = 13, g(n) = g(n-1) + gcd(n, g(n-1)) for n > 4.
Considere $g(n)$ como uma sequência definida assim:
The first few values are:
$$\begin{align} & g(4) = 13, \\\\ & g(n) = g(n-1) + gcd(n, g(n - 1)) \text{ para } n > 4. \end{align}$$
n 4567891011121314151617181920... g(n) 1314161718272829303132333451545560...
Seus primeiros valores são:
<!-- TODO Use MathJax -->
$$\begin{array}{l} n & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & \ldots \\\\ g(n) & 13 & 14 & 16 & 17 & 18 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 51 & 54 & 55 & 60 & \ldots \end{array}$$
You are given that g(1 000) = 2524 and g(1 000 000) = 2624152.
Você é informado de que $g(1.000) = 2.524$ e $g(1.000.000) = 2.624.152$.
Find g(1015).
Encontre $g({10}^{15})$.
# --hints--
`euler443()` should return 2744233049300770.
`gcdSequence()` deve retornar `2744233049300770`.
```js
assert.strictEqual(euler443(), 2744233049300770);
assert.strictEqual(gcdSequence(), 2744233049300770);
```
# --seed--
@ -33,12 +33,12 @@ assert.strictEqual(euler443(), 2744233049300770);
## --seed-contents--
```js
function euler443() {
function gcdSequence() {
return true;
}
euler443();
gcdSequence();
```
# --solutions--