diff --git a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-421-prime-factors-of-n151.md b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-421-prime-factors-of-n151.md
index 61e0b86a92..9e9bb64894 100644
--- a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-421-prime-factors-of-n151.md
+++ b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-421-prime-factors-of-n151.md
@@ -8,20 +8,26 @@ dashedName: problem-421-prime-factors-of-n151
# --description--
-Numbers of the form n15+1 are composite for every integer n > 1.
+Numbers of the form $n^{15} + 1$ are composite for every integer $n > 1$.
-For positive integers n and m let s(n,m) be defined as the sum of the distinct prime factors of n15+1 not exceeding m.
+For positive integers $n$ and $m$ let $s(n, m)$ be defined as the sum of the distinct prime factors of $n^{15} + 1$ not exceeding $m$.
-E.g. 215+1 = 3×3×11×331. So s(2,10) = 3 and s(2,1000) = 3+11+331 = 345.
+E.g. $2^{15} + 1 = 3 × 3 × 11 × 331$.
-Also 1015+1 = 7×11×13×211×241×2161×9091. So s(10,100) = 31 and s(10,1000) = 483. Find ∑ s(n,108) for 1 ≤ n ≤ 1011.
+So $s(2, 10) = 3$ and $s(2, 1000) = 3 + 11 + 331 = 345$.
+
+Also ${10}^{15} + 1 = 7 × 11 × 13 × 211 × 241 × 2161 × 9091$.
+
+So $s(10, 100) = 31$ and $s(10, 1000) = 483$.
+
+Find $\sum s(n, {10}^8)$ for $1 ≤ n ≤ {10}^{11}$.
# --hints--
-`euler421()` should return 2304215802083466200.
+`primeFactorsOfN15Plus1()` should return `2304215802083466200`.
```js
-assert.strictEqual(euler421(), 2304215802083466200);
+assert.strictEqual(primeFactorsOfN15Plus1(), 2304215802083466200);
```
# --seed--
@@ -29,12 +35,12 @@ assert.strictEqual(euler421(), 2304215802083466200);
## --seed-contents--
```js
-function euler421() {
+function primeFactorsOfN15Plus1() {
return true;
}
-euler421();
+primeFactorsOfN15Plus1();
```
# --solutions--
diff --git a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-422-sequence-of-points-on-a-hyperbola.md b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-422-sequence-of-points-on-a-hyperbola.md
index cf7455ac9d..07ec19e1ed 100644
--- a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-422-sequence-of-points-on-a-hyperbola.md
+++ b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-422-sequence-of-points-on-a-hyperbola.md
@@ -8,22 +8,30 @@ dashedName: problem-422-sequence-of-points-on-a-hyperbola
# --description--
-Let H be the hyperbola defined by the equation 12x2 + 7xy - 12y2 = 625.
+Let $H$ be the hyperbola defined by the equation $12x^2 + 7xy - 12y^2 = 625$.
-Next, define X as the point (7, 1). It can be seen that X is in H.
+Next, define $X$ as the point (7, 1). It can be seen that $X$ is in $H$.
-Now we define a sequence of points in H, {Pi : i ≥ 1}, as: P1 = (13, 61/4). P2 = (-43/6, -4). For i > 2, Pi is the unique point in H that is different from Pi-1 and such that line PiPi-1 is parallel to line Pi-2X. It can be shown that Pi is well-defined, and that its coordinates are always rational. You are given that P3 = (-19/2, -229/24), P4 = (1267/144, -37/12) and P7 = (17194218091/143327232, 274748766781/1719926784).
+Now we define a sequence of points in $H, \\{P_i : i ≥ 1\\}$, as:
-Find Pn for n = 1114 in the following format:If Pn = (a/b, c/d) where the fractions are in lowest terms and the denominators are positive, then the answer is (a + b + c + d) mod 1 000 000 007.
+- $P_1 = (13, \frac{61}{4})$.
+- $P_2 = (\frac{-43}{6}, -4)$.
+- For $i > 2$, $P_i$ is the unique point in $H$ that is different from $P_{i - 1}$ and such that line $P_iP_{i - 1}$ is parallel to line $P_{i - 2}X$. It can be shown that $P_i$ is well-defined, and that its coordinates are always rational.
-For n = 7, the answer would have been: 806236837.
+
+
+You are given that $P_3 = (\frac{-19}{2}, \frac{-229}{24})$, $P_4 = (\frac{1267}{144}, \frac{-37}{12})$ and $P_7 = (\frac{17\\,194\\,218\\,091}{143\\,327\\,232}, \frac{274\\,748\\,766\\,781}{1\\,719\\,926\\,784})$.
+
+Find $P_n$ for $n = {11}^{14}$ in the following format: If $P_n = (\frac{a}{b}, \frac{c}{d})$ where the fractions are in lowest terms and the denominators are positive, then the answer is $(a + b + c + d)\bmod 1\\,000\\,000\\,007$.
+
+For $n = 7$, the answer would have been: $806\\,236\\,837$.
# --hints--
-`euler422()` should return 92060460.
+`sequenceOfPointsOnHyperbola()` should return `92060460`.
```js
-assert.strictEqual(euler422(), 92060460);
+assert.strictEqual(sequenceOfPointsOnHyperbola(), 92060460);
```
# --seed--
@@ -31,12 +39,12 @@ assert.strictEqual(euler422(), 92060460);
## --seed-contents--
```js
-function euler422() {
+function sequenceOfPointsOnHyperbola() {
return true;
}
-euler422();
+sequenceOfPointsOnHyperbola();
```
# --solutions--
diff --git a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-423-consecutive-die-throws.md b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-423-consecutive-die-throws.md
index a19a5ce19d..d63900393e 100644
--- a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-423-consecutive-die-throws.md
+++ b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-423-consecutive-die-throws.md
@@ -8,26 +8,38 @@ dashedName: problem-423-consecutive-die-throws
# --description--
-Let n be a positive integer.
+Let $n$ be a positive integer.
-A 6-sided die is thrown n times. Let c be the number of pairs of consecutive throws that give the same value.
+A 6-sided die is thrown $n$ times. Let $c$ be the number of pairs of consecutive throws that give the same value.
-For example, if n = 7 and the values of the die throws are (1,1,5,6,6,6,3), then the following pairs of consecutive throws give the same value: (1,1,5,6,6,6,3) (1,1,5,6,6,6,3) (1,1,5,6,6,6,3) Therefore, c = 3 for (1,1,5,6,6,6,3).
+For example, if $n = 7$ and the values of the die throws are (1, 1, 5, 6, 6, 6, 3), then the following pairs of consecutive throws give the same value:
-Define C(n) as the number of outcomes of throwing a 6-sided die n times such that c does not exceed π(n).1 For example, C(3) = 216, C(4) = 1290, C(11) = 361912500 and C(24) = 4727547363281250000.
+$$\begin{align}
+ & (\underline{1}, \underline{1}, 5, 6, 6, 6, 3) \\\\
+ & (1, 1, 5, \underline{6}, \underline{6}, 6, 3) \\\\
+ & (1, 1, 5, 6, \underline{6}, \underline{6}, 3)
+\end{align}$$
-Define S(L) as ∑ C(n) for 1 ≤ n ≤ L. For example, S(50) mod 1 000 000 007 = 832833871.
+Therefore, $c = 3$ for (1, 1, 5, 6, 6, 6, 3).
-Find S(50 000 000) mod 1 000 000 007.
+Define $C(n)$ as the number of outcomes of throwing a 6-sided die $n$ times such that $c$ does not exceed $π(n)$.1
-1 π denotes the prime-counting function, i.e. π(n) is the number of primes ≤ n.
+For example, $C(3) = 216$, $C(4) = 1290$, $C(11) = 361\\,912\\,500$ and $C(24) = 4\\,727\\,547\\,363\\,281\\,250\\,000$.
+
+Define $S(L)$ as $\sum C(n)$ for $1 ≤ n ≤ L$.
+
+For example, $S(50)\bmod 1\\,000\\,000\\,007 = 832\\,833\\,871$.
+
+Find $S(50\\,000\\,000)\bmod 1\\,000\\,000\\,007$.
+
+1 $π$ denotes the prime-counting function, i.e. $π(n)$ is the number of primes $≤ n$.
# --hints--
-`euler423()` should return 653972374.
+`consecutiveDieThrows()` should return `653972374`.
```js
-assert.strictEqual(euler423(), 653972374);
+assert.strictEqual(consecutiveDieThrows(), 653972374);
```
# --seed--
@@ -35,12 +47,12 @@ assert.strictEqual(euler423(), 653972374);
## --seed-contents--
```js
-function euler423() {
+function consecutiveDieThrows() {
return true;
}
-euler423();
+consecutiveDieThrows();
```
# --solutions--
diff --git a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-424-kakuro.md b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-424-kakuro.md
index 827b969ce6..a8a4030906 100644
--- a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-424-kakuro.md
+++ b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-424-kakuro.md
@@ -8,43 +8,66 @@ dashedName: problem-424-kakuro
# --description--
+
+
The above is an example of a cryptic kakuro (also known as cross sums, or even sums cross) puzzle, with its final solution on the right. (The common rules of kakuro puzzles can be found easily on numerous internet sites. Other related information can also be currently found at krazydad.com whose author has provided the puzzle data for this challenge.)
-The downloadable text file (kakuro200.txt) contains the description of 200 such puzzles, a mix of 5x5 and 6x6 types. The first puzzle in the file is the above example which is coded as follows:
+The `testPuzzles` array contains the description of 200 such puzzles, a mix of 5x5 and 6x6 types. The first puzzle in the file is the above example which is coded as string as follows:
-6,X,X,(vCC),(vI),X,X,X,(hH),B,O,(vCA),(vJE),X,(hFE,vD),O,O,O,O,(hA),O,I,(hJC,vB),O,O,(hJC),H,O,O,O,X,X,X,(hJE),O,O,X
+`6,X,X,(vCC),(vI),X,X,X,(hH),B,O,(vCA),(vJE),X,(hFE,vD),O,O,O,O,(hA),O,I,(hJC,vB),O,O,(hJC),H,O,O,O,X,X,X,(hJE),O,O,X`
The first character is a numerical digit indicating the size of the information grid. It would be either a 6 (for a 5x5 kakuro puzzle) or a 7 (for a 6x6 puzzle) followed by a comma (,). The extra top line and left column are needed to insert information.
-The content of each cell is then described and followed by a comma, going left to right and starting with the top line. X = Gray cell, not required to be filled by a digit. O (upper case letter)= White empty cell to be filled by a digit. A = Or any one of the upper case letters from A to J to be replaced by its equivalent digit in the solved puzzle. ( ) = Location of the encrypted sums. Horizontal sums are preceded by a lower case "h" and vertical sums are preceded by a lower case "v". Those are followed by one or two upper case letters depending if the sum is a single digit or double digit one. For double digit sums, the first letter would be for the "tens" and the second one for the "units". When the cell must contain information for both a horizontal and a vertical sum, the first one is always for the horizontal sum and the two are separated by a comma within the same set of brackets, ex.: (hFE,vD). Each set of brackets is also immediately followed by a comma.
+The content of each cell is then described and followed by a comma, going left to right and starting with the top line.
+
+`X` = Gray cell, not required to be filled by a digit.
+
+`O` (upper case letter)= White empty cell to be filled by a digit.
+
+`A` = Or any one of the upper case letters from A to J to be replaced by its equivalent digit in the solved puzzle.
+
+`( )` = Location of the encrypted sums. Horizontal sums are preceded by a lower case "h" and vertical sums are preceded by a lower case "v". Those are followed by one or two upper case letters depending if the sum is a single digit or double digit one. For double digit sums, the first letter would be for the "tens" and the second one for the "units". When the cell must contain information for both a horizontal and a vertical sum, the first one is always for the horizontal sum and the two are separated by a comma within the same set of brackets, ex.: (hFE,vD). Each set of brackets is also immediately followed by a comma.
The description of the last cell is followed by a Carriage Return/Line Feed (CRLF) instead of a comma.
The required answer to each puzzle is based on the value of each letter necessary to arrive at the solution and according to the alphabetical order. As indicated under the example puzzle, its answer would be 8426039571. At least 9 out of the 10 encrypting letters are always part of the problem description. When only 9 are given, the missing one must be assigned the remaining digit.
-You are given that the sum of the answers for the first 10 puzzles in the file is 64414157580.
+You are given that the sum of the answers for the first 10 puzzles in `testPuzzles` is 64414157580.
-Find the sum of the answers for the 200 puzzles.
+Find the sum of the answers for `puzzles` array.
# --hints--
-`euler424()` should return 1059760019628.
+`kakuro(testPuzzles)` should return `1059760019628`.
```js
-assert.strictEqual(euler424(), 1059760019628);
+assert.strictEqual(kakuro(_testPuzzles), 1059760019628);
```
# --seed--
+
+## --after-user-code--
+
+```js
+const _testPuzzles = [
+ '6,X,X,(vCC),(vI),X,X,X,(hH),B,O,(vCA),(vJE),X,(hFE,vD),O,O,O,O,(hA),O,I,(hJC,vB),O,O,(hJC),H,O,O,O,X,X,X,(hJE),O,O,X','7,X,X,X,X,(vJJ),(vCD),X,X,X,X,(hCG),O,O,(vCE),X,X,X,(hCI,vJB),C,O,O,X,(vB),(hJF,vJF),O,F,O,O,(hJA),F,G,O,O,X,X,(hCA),O,A,O,X,X,X,X,(hCF),O,O,X,X,X','7,X,X,X,(vE),(vCB),X,X,X,X,(hJ),O,O,(vCA),X,X,(vCH),(hCG,vCJ),O,O,O,(vJ),(hCE),O,O,O,(hJ,vGG),O,O,(hD),I,O,(hCD,vCB),H,O,O,X,(hCE),O,O,E,X,X,X,X,(hCE),O,O,X,X','6,X,X,X,(vEA),(vJF),X,X,X,(hI),O,O,(vJA),X,(vA),(hEI,vEB),O,O,O,(hIG),C,O,J,O,D,(hJD),O,O,O,X,X,X,(hJD),O,O,X,X','7,X,(vH),(vG),X,X,(vI),(vDH),(hG),B,O,(vDI),(hDB,vDE),O,O,(hBC),I,O,F,O,O,J,X,X,(hG),O,O,X,X,X,(vDG),(hH,vDD),O,O,(vDJ),(vC),(hBI),O,O,O,O,O,O,(hDJ),O,O,X,(hA),O,O','6,X,(vID),(vIJ),X,X,X,(hH),F,I,(vF),(vIA),X,(hIA),G,B,O,C,X,X,(hID),O,O,O,(vIF),X,(hIA),E,O,I,O,X,X,X,(hII),O,G','6,X,X,(vAF),(vAI),X,X,X,(hJ,vAC),O,B,(vGJ),X,(hGH),J,O,O,O,(vAF),(hAG),O,O,(hH,vF),A,D,X,(hGF),O,E,O,O,X,X,(hD),O,O,X','7,X,X,X,X,(vCE),(vGB),X,X,(vJG),(vCI),(hCD,vCJ),O,O,X,(hCI),O,O,O,O,B,(vJB),(hCF),O,O,O,(hCA,vH),O,O,(hCJ),O,O,(hJB,vCJ),O,O,O,X,(hJD),O,O,O,O,O,X,(hF),I,O,X,X,X','7,X,(vBB),(vBD),X,X,X,X,(hBB),C,E,(vEE),(vEC),X,X,(hBC),O,O,O,O,X,X,X,(hEF),H,O,A,(vJ),X,X,X,(hBD),O,O,O,(vI),X,X,(hBE),F,O,O,O,X,X,X,X,(hG),O,O','7,X,X,(vGG),(vGD),X,(vI),(vGI),X,(hGB),O,O,(hGH,vIC),O,O,X,(hGA),O,O,O,J,O,X,X,(hGI),O,O,X,X,X,(vGD),(hE,vE),O,O,(vGF),X,(hIH),O,O,O,O,O,X,(hE),A,O,(hGF),O,O,X','6,X,(vIJ),(vIE),X,X,X,(hF),O,C,(vIA),X,X,(hCA),O,O,D,(vIH),X,X,(hIB),E,O,O,(vF),X,X,(hD),O,A,O,X,X,X,(hID),O,G','6,X,(vAD),(vGI),(vI),X,X,(hB),O,O,O,(vAF),X,(hGC),O,O,O,O,(vGA),(hGE),O,O,(hJ,vB),O,O,X,(hGD),D,O,E,O,X,X,(hAI),O,C,O','6,X,X,X,(vAB),(vFA),X,X,X,(hHI),O,O,(vHJ),X,(vA),(hFJ,vHE),I,D,O,(hFH),O,O,O,O,O,(hHJ),O,O,O,X,X,X,(hC),O,J,X,X','7,X,X,X,(vJ),(vEF),X,X,X,X,(hI,vGD),C,E,(vEF),(vA),X,(hEH),O,O,O,O,O,X,(hH,vJ),O,O,(hJ,vEJ),O,O,(hD),O,A,(hEF,vEB),O,O,X,(hCC),O,O,A,O,O,X,X,X,(hH),O,O,X,X','7,X,X,X,(vAG),(vAJ),(vFH),X,X,X,(hFD),O,O,O,X,X,(vH),(hAJ,vAB),O,O,O,(vB),(hAH),O,H,O,(hC,vAI),O,O,(hE),O,O,(hAI,vAE),O,O,O,X,(hJ),O,O,O,X,X,X,(hFG),E,O,O,X,X','7,X,(vAI),(vHB),X,X,(vJE),(vAA),(hD),O,O,X,(hG),O,O,(hAJ),O,O,(vE),(hAA,vAI),O,O,X,(hHF),O,O,O,O,X,X,(hJF,vAE),O,O,O,J,(vH),(hAI),D,O,X,(hB),O,O,(hAG),O,O,X,(hAA),O,O','7,X,X,(vHJ),(vC),(vAF),X,X,X,(hHF),O,O,O,(vHI),(vHD),X,(hHB,vAB),O,O,O,O,E,(hAI),O,O,X,(hAB),O,O,(hD),O,O,(vAB),(hAI,vE),J,O,(hHH),O,O,O,B,O,X,X,X,(hG),O,A,O,X','6,X,X,(vDF),(vHE),X,X,X,(hHJ,vE),C,O,X,X,(hHI),O,O,O,(vDF),(vHH),(hFA),A,O,B,O,O,X,X,(hE),O,I,O,X,X,(hHH),O,O,X','6,X,(vA),(vA),X,X,X,(hE),O,O,(vCJ),X,X,(hG),O,O,O,(vHI),X,X,(hHC),O,O,H,(vB),X,X,(hCE),O,O,D,X,X,X,(hE),O,O','6,X,X,X,X,(vEH),(vEC),X,X,X,(hEB,vEJ),O,O,X,X,(hEC,vEF),O,O,B,X,(hDD,vEI),O,B,C,X,(hB),O,D,A,X,X,(hEC),O,O,X,X,X','6,X,X,X,X,(vIF),(vH),X,X,X,(hIJ,vGJ),B,I,X,X,(hIB,vIC),O,O,G,X,(hIA,vC),O,O,O,X,(hE),O,O,O,X,X,(hIA),E,O,X,X,X','7,X,(vC),(vFB),X,X,X,X,(hFH),O,O,(vFA),(vFJ),(vC),X,(hFJ),O,O,O,O,O,X,X,X,(hA,vJ),O,O,O,X,X,(hG),D,O,O,(vC),(vFC),X,(hBH),A,O,O,O,E,X,X,X,X,(hFH),O,I','6,X,X,(vFD),(vC),X,X,X,(hDH),E,F,(vDG),(vDD),X,(hDF,vDI),O,O,A,O,(hDG),O,O,(hDG,vDG),O,O,(hDJ),O,D,J,O,X,X,X,(hJ),E,O,X','6,X,X,X,(vE),(vGH),(vIC),X,X,(hD,vIG),O,O,A,X,(hIF,vJ),O,J,E,O,(hJ),O,D,(hGG,vGH),O,O,(hGG),O,O,O,O,X,(hIC),O,O,O,X,X','7,X,X,X,X,(vAG),(vJA),(vH),X,X,X,(hAJ,vDJ),O,O,O,X,X,(hJF),O,O,O,O,X,X,(hG),D,O,X,X,X,(vJH),(hJE,vJD),C,I,X,X,(hAE),B,O,O,O,X,X,(hAJ),O,O,E,X,X,X','7,X,X,X,X,(vGG),(vIA),(vGF),X,X,X,(hGF),O,O,D,X,X,X,(hGJ,vIB),O,O,O,X,X,(hGH,vGD),O,O,O,X,X,(hII,vC),O,J,O,X,X,(hIH),J,O,O,X,X,X,(hGE),O,I,O,X,X,X','6,X,X,(vFA),(vEC),X,X,X,(hI,vFI),F,O,X,X,(hDE),O,O,O,(vFF),(vFF),(hDI),G,J,O,F,O,X,X,(hFJ),O,D,O,X,X,(hFH),J,A,X','7,X,X,X,X,X,(vID),(vBB),X,X,X,X,(hBC),O,I,X,X,(vIH),(vBH),(hBF,vF),O,O,X,(hIE,vD),O,O,I,O,O,(hAG),O,O,O,O,F,X,(hA),O,O,X,X,X,X,(hD),O,O,X,X,X,X','7,X,(vCD),(vCC),X,X,X,X,(hE),B,C,(vCE),X,X,X,(hCD),O,O,O,(vE),(vCG),X,X,(hCH),O,O,O,O,X,X,(hFC),B,J,G,O,(vCC),X,X,X,(hCI),O,O,O,X,X,X,X,(hG),O,O','7,X,X,X,(vID),(vD),(vFB),X,X,X,(hIB,vID),O,O,O,X,X,(hJE,vIA),J,C,O,D,(vF),(hIB),O,O,X,(hIG),O,O,(hIJ),O,O,(vD),(hA,vID),O,O,X,(hJF),O,O,O,O,X,X,(hIE),O,O,O,X,X','7,X,X,(vAC),(vAH),X,X,X,X,(hD),O,O,(vAD),X,X,X,(hCH,vAD),O,O,O,(vAA),(vF),(hAC),O,H,(hAB,vAJ),O,O,A,(hAE),O,O,O,(hD,vAD),O,O,X,X,(hAC),O,O,O,X,X,X,X,(hG),O,O,X','6,X,X,(vBB),(vBE),X,X,X,(hBH),O,I,(vBG),(vBB),X,(hHE,vBD),H,D,O,O,(hBA),C,O,(hA,vG),O,O,(hBF),I,O,O,O,X,X,X,(hG),O,O,X','6,X,X,(vEC),(vD),X,X,X,(hD,vH),O,O,(vIB),X,(hIA),O,O,O,O,(vE),(hII),O,F,(hII,vIG),O,O,X,(hIH),O,O,O,O,X,X,(hIA),O,D,X','6,X,X,X,X,(vEH),(vEG),X,X,X,(hEB,vEF),O,O,X,X,(hAC,vG),O,B,O,X,(hEE,vEC),O,D,O,X,(hEE),O,O,O,X,X,(hEJ),D,O,X,X,X','6,X,(vD),(vB),X,X,X,(hA),O,O,(vE),X,X,(hE),A,O,O,(vCJ),X,X,(hCH),O,A,O,(vCI),X,X,(hB),O,D,O,X,X,X,(hCB),G,O','7,X,X,X,X,(vHJ),(vIF),(vIB),X,X,X,(hIH,vJI),O,O,J,X,X,(hIA),O,O,O,F,X,X,(hIG),O,C,X,X,X,(vD),(hA,vIB),O,J,X,X,(hHB),O,O,O,O,X,X,(hHB),O,O,O,X,X,X','7,X,X,X,(vBJ),(vIB),X,X,X,(vIF),(hBB,vBB),O,O,(vBA),X,(hIC),O,O,O,O,O,(vBA),(hBD),O,O,(hC,vC),O,O,O,(hBJ),E,O,O,(hBC,vBI),G,H,X,(hBA),O,O,O,O,O,X,X,(hBF),O,O,X,X','7,X,(vHI),(vHE),X,X,X,X,(hA),O,O,X,X,X,X,(hHG),O,O,(vHH),(vHE),(vIJ),X,(hHA),O,O,O,O,O,(vHI),X,(hID),H,O,O,B,I,X,X,X,X,(hHB),F,O,X,X,X,X,(hHE),O,H','6,X,X,(vAJ),(vAJ),X,X,X,(hAF,vAA),G,A,X,X,(hDA),O,O,O,(vDE),(vAH),(hAJ),O,O,O,O,I,X,X,(hAG),D,C,O,X,X,(hAI),O,O,X','6,X,X,X,X,(vDH),(vDA),X,X,X,(hG,vDG),O,E,X,X,(hBJ,vBC),O,O,O,X,(hBI,vE),O,E,O,X,(hE),O,O,O,X,X,(hDH),O,E,X,X,X','6,X,X,X,X,(vHJ),(vHH),X,X,X,(hHE,vCC),O,O,X,X,(hF,vG),A,O,O,X,(hHC,vHJ),O,B,O,X,(hHH),O,O,O,X,X,(hHI),O,O,X,X,X','7,X,(vJ),(vDG),X,X,(vDF),(vEF),(hC),E,B,X,(hEA),O,O,(hEE),C,O,(vH),(hED,vEF),A,O,X,(hEC),O,O,O,O,X,X,(hDD,vEF),O,O,O,O,(vEA),(hEJ),O,F,X,(hJ),O,O,(hEF),O,O,X,(hEF),O,O','7,X,X,X,(vCC),(vD),X,X,X,(vJE),(hI,vCH),O,O,(vBF),X,(hCC),O,O,O,O,A,(vJB),(hCB),G,O,O,(hJA,vJF),O,O,(hJA),O,O,(hG,vH),O,O,O,X,(hCE),O,O,O,O,O,X,X,(hH),O,O,X,X','7,X,X,(vEI),(vEB),(vG),X,X,X,(hEF),E,O,O,(vHE),X,X,(hEF,vH),O,O,O,O,(vEI),(hH),O,O,X,(hEH),O,B,(hG),O,O,(vG),(hEI,vED),O,O,X,(hAG),C,O,O,O,X,X,X,(hEE),O,O,O,X','6,X,X,X,X,(vJE),(vF),X,X,X,(hI,vJJ),O,O,X,X,(hEC,vJJ),H,O,O,X,(hF,vJB),O,O,O,X,(hJI),A,C,E,X,X,(hJD),O,J,X,X,X','6,X,X,X,(vH),(vAE),X,X,X,(hCB,vCJ),O,O,(vCB),X,(hCA,vD),O,O,O,O,(hD),C,O,(hCC,vJ),O,O,(hAB),A,O,F,O,X,X,(hB),G,O,X,X','6,X,X,(vEC),(vEG),X,X,X,(hEF),O,O,(vFC),(vEI),X,(hHJ,vJ),E,O,O,A,(hJ),O,O,(hEA,vEA),O,O,(hHH),O,O,O,B,X,X,X,(hEF),O,O,X','7,X,(vEI),(vEC),X,X,X,X,(hH),O,O,X,X,X,X,(hED),O,O,(vEB),(vEG),(vGB),X,(hEJ),O,O,O,O,O,(vD),X,(hIA),O,O,O,O,C,X,X,X,X,(hA),O,I,X,X,X,X,(hEB),A,O','7,X,X,X,(vF),(vG),(vIB),X,X,(vG),(hBA,vIH),J,I,D,X,(hBG),O,O,O,O,O,(vBG),(hA),O,O,X,(hE),O,O,(hBB),O,C,(vA),(hBI,vBE),O,O,X,(hBA),O,O,O,O,O,X,(hBF),O,O,O,X,X','7,X,X,(vEF),(vDI),X,X,X,X,(hDG),O,O,(vDA),X,X,X,(hEA,vG),O,O,O,(vEJ),(vJ),(hF),O,G,(hDH,vDI),O,O,F,(hED),O,O,O,(hDD,vB),O,O,X,X,(hDB),O,O,A,X,X,X,X,(hH),O,O,X','7,X,X,X,X,(vJH),(vD),(vAJ),X,X,X,(hAC,vDH),O,O,O,X,X,(hAA),O,O,O,O,X,X,(hC),F,O,X,X,X,(vC),(hAJ,vAA),I,H,X,X,(hJA),O,D,O,G,X,X,(hJB),O,C,O,X,X,X','6,X,X,X,(vDC),(vG),X,X,X,(hA),O,O,(vCH),X,(vCI),(hCB,vB),O,O,O,(hDF),O,H,O,O,O,(hH),O,O,O,X,X,X,(hH),J,O,X,X','6,X,X,(vCG),(vGA),X,X,X,(hE),O,O,(vGG),(vGB),X,(hCI,vF),O,O,O,I,(hGI),O,O,(hI,vD),O,A,(hGH),O,B,O,O,X,X,X,(hA),O,O,X','6,X,X,X,(vJ),(vHF),X,X,(vF),(hHG,vHD),O,A,X,(hHI),A,O,O,O,(vHE),(hB),G,O,(hD,vHE),O,F,X,(hGJ),O,O,O,O,X,(hHD),O,O,X,X','6,X,X,X,X,(vBD),(vD),X,X,X,(hD,vBB),O,O,X,X,(hI,vHD),O,O,O,X,(hHD,vBE),O,O,A,X,(hHF),C,O,G,X,X,(hBI),O,O,X,X,X','7,X,(vJ),(vFB),(vDB),X,X,X,(hFC),O,O,O,(vFE),X,X,(hFB),O,O,O,O,X,X,X,X,(hG),I,O,X,X,X,X,(hA),O,O,(vFG),(vE),X,X,(hDD),O,O,O,A,X,X,X,(hFD),D,E,J','6,X,X,X,(vAD),(vAH),X,X,(vB),(hF,vEB),O,O,X,(hED),O,O,O,O,(vD),(hD),O,O,(hJ,vI),O,O,X,(hEH),O,A,O,C,X,(hB),G,O,X,X','6,X,X,X,X,(vFG),(vFB),X,X,X,(hFD,vB),O,O,X,X,(hFG,vFG),O,O,O,X,(hI,vH),O,O,C,X,(hGA),E,H,O,X,X,(hD),O,G,X,X,X','7,X,X,X,(vBH),(vBB),X,X,X,X,(hBJ,vBJ),I,O,(vHE),(vI),X,(hBF,vBA),O,O,O,O,O,(hBE),O,D,X,(hA),O,O,(hBC),O,O,(vA),(hBB,vBH),O,O,(hDA),B,H,O,O,O,X,X,X,(hI),O,O,X,X','7,X,X,X,(vEC),(vD),X,X,X,(vJ),(hEB,vEJ),O,O,X,X,(hFC),O,O,O,F,(vEG),X,(hG),O,O,(hH,vFI),O,E,(vEH),X,(hEB),A,O,(hED,vJ),O,O,X,X,(hFI),O,O,O,O,X,X,(hED),O,O,X,X','6,X,(vGH),(vGG),X,X,X,(hGE),O,O,(vFI),(vGJ),X,(hGF),O,O,D,O,X,X,(hGB),O,C,O,(vGG),X,(hFG),O,O,O,O,X,X,X,(hE),O,I','7,X,X,X,(vF),(vGI),X,X,X,(vJ),(hB,vGA),H,G,X,X,(hHF),O,O,O,A,(vHH),X,(hB),O,O,(hGB,vGA),C,O,(vC),X,(hGC),O,O,(hGI,vGF),O,O,X,X,(hHB),O,E,O,O,X,X,(hA),O,O,X,X','7,X,X,X,X,X,(vED),(vIG),X,X,X,X,(hEC),O,O,X,X,(vAC),(vA),(hH,vEG),O,O,X,(hAE,vB),O,O,H,O,O,(hIJ),O,O,O,B,O,X,(hEC),O,O,X,X,X,X,(hEI),O,O,X,X,X,X','7,X,X,(vAI),(vAA),X,X,X,X,(hAD,vAG),O,O,(vAE),X,X,(hAH),O,O,O,O,(vBH),(vD),(hG),O,O,(hI,vE),O,O,O,(hAI),O,O,O,(hG,vAC),D,F,X,X,(hAH),O,O,O,O,X,X,X,(hAJ),O,O,X','7,X,X,(vGD),(vFB),(vJ),X,X,X,(hGD),O,O,O,(vFA),(vGG),X,(hFA),O,O,O,O,O,X,(hGE,vGF),O,O,(hH,vFB),O,O,(hH),O,G,(hGC,vD),O,G,X,(hEB),O,O,O,O,O,X,X,X,(hGC),O,A,O,X','6,X,X,(vAD),(vEE),X,X,X,(hEC),G,O,(vAJ),(vH),X,(hEC,vEG),O,A,O,O,(hEG),F,O,(hEG,vEG),O,O,(hAB),O,E,F,A,X,X,X,(hEG),O,O,X','6,X,X,X,X,(vIB),(vJ),X,X,X,(hB,vIJ),O,O,X,X,(hE,vIF),O,O,C,X,(hFC,vIF),O,A,O,X,(hG),O,O,H,X,X,(hIJ),O,O,X,X,X','6,X,X,X,(vIB),(vEB),X,X,X,(hD,vAE),O,O,(vE),X,(hIJ,vE),O,O,O,O,(hII),O,O,(hJ,vC),H,O,(hAE),O,O,G,J,X,X,(hC),O,O,X,X','6,X,X,(vFF),(vB),X,X,X,(hC,vI),O,J,(vJE),X,(hJJ),O,O,I,G,(vA),(hJJ),O,O,(hJD,vJE),O,O,X,(hJB),O,O,F,O,X,X,(hJH),C,J,X','7,X,X,X,(vEI),(vJI),X,X,X,X,(hJA),O,O,(vJE),(vJJ),X,X,(hJI,vJB),O,E,O,D,X,(hJI,vC),O,H,(hJB,vJE),O,O,(hB),O,O,(hF,vD),O,O,X,(hJB),O,O,O,O,X,X,X,X,(hJE),O,O,X,X','7,X,(vJB),(vFD),X,X,(vFE),(vH),(hJF),O,O,X,(hH),O,O,(hJC),O,O,(vH),(hJF,vJF),O,O,X,(hJI),H,O,O,O,X,X,(hFJ,vJJ),J,O,O,O,(vJA),(hA),G,O,X,(hJF),O,C,(hJC),O,O,X,(hD),O,O','7,X,(vI),(vDH),X,X,X,X,(hB),O,I,X,X,X,X,(hC),O,O,(vA),(vI),(vDJ),X,(hDH),O,B,O,O,O,(vDH),X,(hGG),O,O,O,J,O,X,X,X,X,(hHH),B,O,X,X,X,X,(hHE),O,O','6,X,X,(vDI),(vE),X,X,X,(hA,vDA),E,O,(vHI),X,(hHI),F,A,O,O,(vDF),(hDD),O,O,(hDJ,vDJ),O,O,X,(hDG),O,O,H,O,X,X,(hB),O,D,X','6,X,(vJ),(vDH),X,X,X,(hDA),G,O,(vDA),(vDB),X,(hDB),O,O,I,F,X,X,(hG),O,F,O,(vDI),X,(hED),G,O,O,F,X,X,X,(hDE),O,H','6,X,X,(vCJ),(vD),X,X,X,(hG),O,O,(vAD),(vAE),X,(hCC,vI),O,O,A,O,(hJ),O,F,(hAD,vAD),I,H,(hCD),O,O,O,F,X,X,X,(hAJ),O,G,X','7,X,X,X,X,(vEF),(vEC),(vF),X,X,X,(hED,vEB),O,O,O,X,X,(hEB),O,O,O,O,X,X,(hC),O,D,X,X,X,(vI),(hB,vEE),O,O,X,X,(hEB),E,H,D,O,X,X,(hHJ),O,G,O,X,X,X','7,X,X,X,X,(vJF),(vIC),X,X,X,(vIA),(hD,vJE),O,O,X,X,(hIJ,vD),J,O,O,D,(vG),(hJC),I,O,O,(hJA,vC),O,O,(hJF),J,C,(hJF,vJE),O,O,O,X,(hIB),O,O,O,O,X,X,(hJF),O,O,X,X,X','6,X,(vH),(vJE),X,X,X,(hC),J,O,(vJJ),(vJC),X,(hJJ),A,I,O,H,X,X,(hD),O,O,A,(vC),X,(hAI),F,B,O,O,X,X,X,(hC),J,O','7,X,(vA),(vEE),X,X,(vD),(vF),(hEC),O,O,(vIH),(hI,vEB),O,O,(hBD),O,O,O,O,F,O,X,X,(hA),O,O,X,X,X,(vJ),(hEJ,vEG),F,O,(vA),(vG),(hBG),O,O,O,O,O,O,(hEH),O,O,X,(hG),O,O','6,X,X,X,(vFG),(vFC),X,X,(vE),(hFE,vFF),A,O,X,(hBF),O,O,O,O,(vH),(hE),O,O,(hD,vFF),I,O,X,(hFF),O,O,E,D,X,(hFI),O,O,X,X','6,X,X,(vHA),(vFH),X,X,X,(hFF),O,O,(vFH),(vE),X,(hDI,vFG),O,O,O,O,(hFG),B,O,(hC,vFB),O,O,(hDC),O,G,O,F,X,X,X,(hFF),O,O,X','7,X,X,(vBE),(vBB),(vA),X,X,X,(hH),O,O,O,(vBA),(vH),X,(hGI,vBB),O,J,O,O,O,(hBG),O,O,X,(hI),O,O,(hC),O,O,(vBG),(hE,vBD),H,C,(hBI),O,O,O,O,O,X,X,X,(hGG),O,O,O,X','7,X,X,X,X,X,(vHC),(vF),X,X,X,X,(hF,vC),O,E,X,X,(vEJ),(hEF,vEG),F,O,H,X,(hHD),C,O,O,O,X,X,(hHC,vI),A,O,O,O,X,(hJ),D,O,O,X,X,X,(hF),O,O,X,X,X,X','6,X,X,(vH),(vDC),X,X,X,(hCI,vCD),O,O,X,X,(hH),O,O,O,(vCA),(vCB),(hCJ),O,I,O,D,E,X,X,(hDI),E,H,O,X,X,(hG),O,O,X','7,X,X,X,X,(vJ),(vHE),X,X,X,X,(hHA,vHF),O,B,(vHE),X,X,(hEC,vHG),O,O,O,O,X,(hHE,vHG),O,O,(hA,vHB),O,O,(hJ),O,O,(hHE,vJ),O,O,X,(hED),O,J,O,O,X,X,X,(hB),O,O,X,X,X','6,X,X,(vJG),(vA),X,X,X,(hI),B,O,(vJC),(vJH),X,(hJH,vJC),O,E,O,O,(hB),O,O,(hJJ,vF),O,O,(hCE),O,O,D,I,X,X,X,(hB),O,H,X','6,X,X,X,X,(vDG),(vHH),X,X,(vDH),(hJ,vHB),O,O,X,(hJF),O,O,O,O,X,(hHF,vE),O,O,O,X,(hDJ),H,O,O,I,X,(hHC),G,O,X,X,X','7,X,(vAI),(vHC),X,X,X,X,(hD),O,G,X,X,(vHI),(vG),(hAJ),O,O,(vB),(hH,vAH),O,O,X,(hHF,vH),O,O,F,O,O,(hCA),O,O,O,O,O,(vF),(hH),O,O,X,(hG),O,O,X,X,X,X,(hAH),O,O','7,X,X,X,X,(vFG),(vFI),X,X,X,X,(hFI,vFB),O,O,(vFJ),X,(vFA),(hFG,vGA),O,B,O,O,(hIB),O,O,O,(hH,vJ),O,O,(hJ),O,O,(hFD,vD),O,C,O,(hII),O,O,O,O,X,X,X,(hE),O,O,X,X,X','7,X,X,X,(vI),(vEG),(vFD),X,X,(vED),(hA,vEB),O,O,O,X,(hJC),O,O,A,O,O,X,(hEG),O,O,(hEG,vEC),O,O,(vB),X,(hH),O,O,(hJ,vEB),O,O,X,(hEI),O,O,O,O,J,X,(hFF),O,H,O,X,X','6,X,X,(vEI),(vEB),X,X,X,(hEC,vB),O,O,(vEB),X,(hHC),J,O,O,F,(vEC),(hH),O,O,(hB,vEC),O,O,X,(hEH),O,O,O,O,X,X,(hEA),D,O,X','6,X,X,(vAF),(vBF),X,X,X,(hBI),O,G,(vAD),(vBD),X,(hBI,vF),O,J,O,E,(hBB),A,G,(hBI,vBI),O,H,(hAJ),B,O,O,O,X,X,X,(hBA),O,O,X','6,X,(vCB),(vJ),X,X,X,(hCE),A,O,(vCI),X,X,(hCG),D,O,O,(vCC),X,X,(hCA),O,O,O,(vB),X,X,(hB),O,E,G,X,X,X,(hG),O,H','7,X,X,X,X,X,(vFI),(vHG),X,X,X,X,(hHJ,vHH),O,O,X,X,(vHC),(hHD,vHG),O,O,O,X,(hHH),O,O,O,O,X,X,(hFE,vHC),O,O,O,D,X,(hHE),H,O,O,X,X,X,(hHE),I,A,X,X,X,X','7,X,X,(vFA),(vC),X,X,X,X,(hE),O,B,(vAC),(vGJ),X,X,(hFF,vG),O,O,O,O,(vAI),(hAA),O,D,(hAB,vAC),O,O,O,(hAH),O,O,O,(hAB,vAB),O,O,X,(hFJ),O,O,O,O,X,X,X,X,(hAH),O,J,X','7,X,X,X,(vIF),(vIB),X,X,X,X,(hID),O,O,(vC),X,X,(vIF),(hIH,vEE),O,O,O,(vII),(hEB),O,O,O,(hIB,vIF),D,J,(hIF),O,O,(hII,vIE),O,O,O,X,(hJ),O,G,O,X,X,X,X,(hIF),O,O,X,X','7,X,(vDJ),(vDB),X,X,X,X,(hDJ),O,O,(vDF),(vCE),(vI),X,(hCH),O,O,O,O,O,X,X,X,(hDC,vDB),O,A,G,X,X,(hFE),O,O,O,(vDJ),(vI),X,(hCF),O,O,O,O,O,X,X,X,X,(hDE),O,O','6,X,X,(vCI),(vJ),X,X,X,(hA),O,E,(vEG),(vCC),X,(hEG,vCF),O,O,D,O,(hJ),C,G,(hB,vCC),C,O,(hED),O,O,A,O,X,X,X,(hCD),O,O,X','6,X,X,X,(vG),(vFE),X,X,X,(hG,vBC),O,O,(vBC),X,(hFJ,vC),O,E,O,I,(hG),O,O,(hBF,vBC),O,O,(hEJ),O,O,O,O,X,X,(hBA),D,O,X,X','6,X,X,(vAJ),(vE),X,X,X,(hFH,vH),O,O,(vFA),X,(hFH),O,O,O,O,(vFI),(hI),O,C,(hFI,vFD),O,O,X,(hAC),O,O,I,G,X,X,(hC),O,O,X','6,X,X,X,(vE),(vCJ),X,X,(vFF),(hA,vHJ),C,O,X,(hFC),O,O,O,F,(vD),(hFI),O,O,(hFE,vFJ),O,O,X,(hFG),O,O,O,O,X,(hFD),O,O,X,X','7,X,X,X,(vBJ),(vBI),X,X,X,X,(hA),O,O,(vCH),(vBJ),X,(vCJ),(hCB,vG),H,O,I,B,(hBA),O,O,O,(hBE,vG),O,O,(hBB),F,O,(hBE,vBI),O,O,O,(hBI),O,O,O,O,X,X,X,X,(hBC),O,O,X,X','6,X,X,(vCJ),(vD),X,X,X,(hH),O,O,(vBD),(vJ),X,(hCI,vCH),O,J,F,O,(hCG),O,E,(hA,vCD),O,F,(hBF),O,O,O,O,X,X,X,(hCG),O,O,X','6,X,X,X,X,(vJB),(vG),X,X,X,(hA,vH),I,O,X,X,(hCD,vCG),O,O,B,X,(hCF,vCD),O,O,O,X,(hJD),O,H,O,X,X,(hB),O,O,X,X,X','7,X,(vI),(vEH),X,X,(vCC),(vF),(hG),O,O,X,(hH),O,C,(hJ),O,O,(vAD),(hAG,vG),O,O,X,(hEI),F,O,O,O,X,X,(hAD,vAB),O,O,I,O,(vI),(hG),O,O,X,(hC),O,O,(hAJ),O,O,X,(hAA),O,O','7,X,X,X,X,X,(vEC),(vEA),X,X,X,X,(hB),O,O,X,X,(vDF),(vEH),(hEC,vH),H,O,X,(hEA,vI),O,B,E,O,O,(hDB),E,J,O,D,O,X,(hEH),O,A,X,X,X,X,(hI),O,O,X,X,X,X','6,X,X,X,(vBC),(vBC),X,X,X,(hBJ,vEC),H,O,(vBB),X,(hBE,vA),D,J,O,O,(hC),O,O,(hBE,vBG),O,O,(hEG),H,O,B,O,X,X,(hBI),O,O,X,X','7,X,(vE),(vCF),X,X,X,X,(hJ),O,O,(vFB),X,X,X,(hCJ),O,O,A,(vFE),(vCA),X,X,(hIH),O,O,O,O,X,X,(hFF),O,O,O,B,(vFA),X,X,X,(hCI),O,O,O,X,X,X,X,(hFG),O,O','7,X,X,X,X,(vBH),(vH),X,X,X,X,(hI),O,O,(vE),X,X,X,(hJG,vBF),O,O,O,X,(vH),(hBA,vJE),O,O,O,O,(hDG),O,O,O,O,X,X,(hBG),O,F,O,X,X,X,X,(hA),J,O,X,X,X','7,X,X,X,X,X,(vIC),(vA),X,X,X,(vII),(hG,vIH),F,I,X,X,(hIG),O,O,O,D,X,X,(hC,vC),O,O,J,X,X,(hIF,vE),O,G,A,X,X,(hIH),O,O,O,O,X,X,(hJ),F,D,X,X,X,X','7,X,X,X,(vH),(vCJ),X,X,X,(vCG),(hCB,vEG),O,O,X,X,(hEF),O,I,O,O,(vCI),X,(hCD),O,J,(hCB,vCJ),E,O,(vCC),X,(hCE),O,O,(hCI,vH),O,O,X,X,(hEB),O,O,O,O,X,X,(hD),O,O,X,X','6,X,(vGA),(vBE),X,X,X,(hGC),H,O,(vGF),X,X,(hGG),O,O,O,(vGD),X,X,(hBG),O,J,O,(vGD),X,X,(hGD),O,O,E,X,X,X,(hGH),O,O','6,X,X,(vEE),(vEJ),X,X,X,(hI,vEF),O,O,(vEH),X,(hEA),O,O,O,E,(vB),(hEE),O,O,(hB,vB),O,O,X,(hEG),A,O,I,O,X,X,(hA),D,B,X','6,X,(vJ),(vHA),X,X,X,(hHH),D,O,(vHG),X,X,(hI),O,O,F,(vDG),X,X,(hDJ),O,O,O,(vHF),X,X,(hHF),O,O,E,X,X,X,(hHE),B,O','6,X,X,X,X,(vFI),(vE),X,X,X,(hH,vA),J,I,X,X,(hGF,vD),O,O,F,X,(hGF,vC),O,O,A,X,(hD),O,O,O,X,X,(hD),O,O,X,X,X','7,X,X,(vHG),(vE),X,X,X,X,(hGD),O,O,(vGA),(vHC),(vAJ),X,(hGD,vAC),O,O,O,O,O,(hGC),O,O,(hAA,vGC),O,O,O,(hAC),O,O,F,(hGD,vD),O,O,(hHB),O,O,O,O,O,X,X,X,X,(hI),O,D,X','7,X,X,(vBG),(vBJ),X,(vBD),(vE),X,(hC),O,O,(hBB,vAG),O,C,X,(hBE),O,O,O,O,D,X,(hBG),O,O,O,(vBE),X,X,(vE),(hBI,vJ),O,O,O,X,(hCG),F,G,O,O,O,X,(hC),O,O,(hBJ),O,O,X','7,X,X,X,X,X,(vEA),(vJJ),X,X,(vED),(vJI),(hF),O,O,X,(hB),O,O,(hJH,vB),O,O,X,(hED),O,B,O,O,X,X,(hJI,vJI),O,O,C,O,X,(hJH),O,O,(hJJ),O,O,X,(hF),J,E,X,X,X,X','6,X,(vF),(vED),X,X,X,(hEI),O,O,(vEA),X,X,(hEJ),O,O,J,(vB),X,X,(hB),O,O,O,(vG),X,X,(hJ),B,O,C,X,X,X,(hF),O,E','6,X,X,X,X,(vCH),(vCD),X,X,X,(hG,vCH),O,O,X,X,(hCH,vCI),O,O,O,X,(hFA,vCE),O,O,J,X,(hFF),O,O,O,X,X,(hI),F,C,X,X,X','6,X,X,(vCH),(vA),X,X,X,(hE,vE),D,O,(vAG),(vHC),(hHB),O,O,C,O,I,(hHA),O,O,(hE,vJ),O,O,(hCH),A,O,O,O,O,X,X,(hHD),O,O,X','7,X,(vF),(vDG),(vGD),X,X,X,(hA),O,D,O,(vI),(vGE),X,(hDG),O,C,O,O,O,X,(hGC),H,O,(hH,vA),O,O,(vGF),X,(hH),O,O,(hGB,vGD),O,O,X,(hDH),O,D,O,O,O,X,X,X,(hA),O,O,G','7,X,X,X,X,(vIG),(vIG),X,X,X,X,(hCJ),O,O,(vCE),X,X,X,(hIE,vEA),O,O,O,X,(vJ),(hEA,vIE),O,O,O,O,(hCH),O,F,O,O,X,X,(hCH),I,B,O,X,X,X,X,(hCH),O,O,X,X,X','7,X,X,X,X,(vJ),(vDB),X,X,X,X,(hDG,vH),O,O,X,X,(vB),(hJ,vEB),E,O,O,(vG),(hDJ),O,F,D,(hI,vDC),O,O,(hA),O,O,(hJ,vA),O,O,I,X,(hDA),O,O,O,X,X,X,(hDH),O,O,X,X,X','6,X,X,X,(vEE),(vJA),(vEI),X,X,(hD,vEE),O,F,O,X,(hED,vEC),O,O,O,O,(hJ),O,O,(hEH,vEI),O,O,(hIB),O,O,O,O,X,(hII),O,O,O,X,X','6,X,(vE),(vGH),X,X,X,(hC),O,J,(vFJ),X,X,(hGH),O,O,O,(vJ),X,X,(hFA),B,O,I,(vFF),X,X,(hFG),O,O,O,X,X,X,(hB),F,G','6,X,X,(vIF),(vIJ),X,X,X,(hD,vIC),O,O,X,X,(hIB),O,O,O,(vIG),(vA),(hBF),O,O,F,I,O,X,X,(hE),D,O,F,X,X,(hIF),O,C,X','7,X,(vCD),(vB),X,X,X,X,(hII),O,D,(vA),X,X,X,(hIJ),O,O,O,(vII),X,X,(hID),O,O,O,O,(vIJ),(vCJ),X,X,(hCA),H,O,F,O,X,X,X,(hA),O,O,G,X,X,X,X,(hII),J,O','7,X,(vC),(vFF),X,X,(vHF),(vD),(hFD),O,O,(vHG),(hA,vFJ),O,O,(hHF),O,O,O,O,O,O,X,X,(hFG,vFH),O,O,O,X,X,(hFB,vI),O,O,O,(vFB),(vB),(hIG),O,O,O,O,D,J,(hG),O,I,X,(hFE),O,O','7,X,(vHJ),(vDE),X,X,(vDI),(vHH),(hHG),O,J,(vHJ),(hJ),O,O,(hHE),O,O,O,(hHJ,vB),O,O,X,(hHH),O,O,O,O,X,X,(hDJ,vHA),D,O,E,O,(vF),(hHJ),O,O,(hA),O,O,E,(hHA),O,O,X,(hI),O,O','7,X,(vEH),(vFA),X,X,X,X,(hEB),O,O,(vFA),X,X,X,(hFD),O,O,O,(vEE),(vID),X,X,(hFB),O,O,O,O,X,X,(hFJ),O,O,O,O,(vEE),X,X,X,(hJ),O,B,O,X,X,X,X,(hEH),C,O','6,X,(vJ),(vE),X,X,X,(hA),B,C,(vCJ),X,X,(hCG),O,O,O,(vCD),X,X,(hHF),O,O,O,(vJ),X,X,(hE),O,O,H,X,X,X,(hCE),O,O','6,X,(vGC),(vGH),X,X,X,(hGG),O,O,(vGB),X,X,(hGI),E,O,I,(vGG),X,X,(hIJ),O,C,O,(vA),X,X,(hD),G,O,O,X,X,X,(hD),O,O','6,X,X,X,X,(vIG),(vII),X,X,X,(hE,vIA),I,G,X,X,(hGJ,vGF),O,C,O,X,(hIE,vII),D,O,O,X,(hGJ),O,B,O,X,X,(hA),O,J,X,X,X','6,X,X,X,X,(vIA),(vE),X,X,(vJB),(hB,vII),I,J,X,(hIF),O,O,O,H,X,(hIB,vG),D,J,O,X,(hJG),C,O,O,F,X,(hB),O,O,X,X,X','7,X,X,X,(vDB),(vGG),X,X,X,X,(hGH),O,O,(vGA),(vGA),X,X,(hGF,vGA),O,O,O,O,X,(hGA,vGE),B,O,(hGD,vI),O,O,(hJ),O,I,(hGE,vGG),O,O,X,(hDA),O,D,O,O,X,X,X,X,(hF),O,O,X,X','6,X,X,X,(vFB),(vI),X,X,X,(hGF),O,O,(vGA),X,(vH),(hGA,vFD),O,O,O,(hFF),O,A,O,O,C,(hGG),O,J,O,X,X,X,(hGH),O,D,X,X','6,X,X,(vGA),(vA),X,X,X,(hB,vGE),O,O,(vHJ),X,(hBD),O,O,O,O,(vGH),(hGC),O,O,(hGJ,vGE),O,O,X,(hGG),O,F,O,O,X,X,(hGC),O,O,X','7,X,X,(vCE),(vG),(vI),X,X,X,(hEE),A,O,E,(vCD),(vCH),X,(hEG,vCD),O,O,O,O,O,(hA),G,C,X,(hEH),O,O,(hEE),O,O,(vI),(hA,vD),O,O,(hCF),O,O,O,O,O,X,X,X,(hED),O,O,B,X','7,X,(vG),(vDC),X,(vBA),(vDG),X,(hJ),O,G,(hDA,vBA),O,O,X,(hBC),O,O,G,O,O,X,X,(hDH),O,O,O,(vG),X,X,X,(hG,vDI),O,O,O,(vJ),X,(hBB),E,O,O,O,O,X,(hH),O,J,(hB),O,O','6,X,X,X,(vJG),(vCG),X,X,(vJG),(hJB,vJH),O,O,X,(hJH),I,B,O,O,(vD),(hJB),O,O,(hA,vJG),O,O,X,(hJB),O,B,O,O,X,(hF),I,C,X,X','7,X,(vA),(vE),X,X,(vD),(vB),(hF),O,O,(vJJ),(hI,vGD),O,O,(hGD),O,O,O,O,I,O,X,X,(hJI),O,O,X,X,X,(vJE),(hA,vF),I,O,(vD),(vJJ),(hGA),O,O,O,J,O,O,(hH),O,O,X,(hI),O,O','7,X,X,(vEH),(vEF),X,X,X,X,(hEI,vIH),O,O,(vEI),X,X,(hEI),O,O,O,O,(vIE),(vEJ),(hD),O,O,(hEH,vH),O,O,O,(hEC),O,O,O,(hD,vC),H,G,X,X,(hIA),O,O,O,O,X,X,X,(hD),E,O,X','7,X,X,X,X,X,(vEA),(vCJ),X,X,X,X,(hCD,vCC),O,O,X,X,(vCI),(hCJ,vEH),O,O,O,X,(hDH),O,J,B,O,X,X,(hCH,vD),O,O,O,O,X,(hCJ),O,O,O,X,X,X,(hJ),O,G,X,X,X,X','7,X,(vB),(vFF),X,(vEI),(vFE),X,(hH),O,O,(hFC,vIB),G,O,X,(hFC),O,O,O,O,O,X,X,X,(hFH),O,D,X,X,X,X,(hFF,vFG),O,O,(vFE),(vFH),X,(hEE),O,O,J,O,O,X,(hFG),O,O,(hFG),O,O','6,X,(vHE),(vII),X,X,X,(hHB),O,O,(vHF),(vHJ),X,(hHD),B,O,O,O,X,X,(hG),H,O,O,(vHE),X,(hCA),O,O,E,B,X,X,X,(hHB),O,G','6,X,(vH),(vAF),X,X,X,(hAC),O,O,(vAD),X,X,(hDI),J,O,O,(vAH),X,X,(hAC),O,O,O,(vAI),X,X,(hH),O,O,B,X,X,X,(hAH),O,E','6,X,(vC),(vHA),X,X,X,(hC),O,J,(vHA),X,X,(hF),J,O,O,(vHC),X,X,(hI),O,J,O,(vF),X,X,(hEJ),O,O,B,X,X,X,(hG),O,O','6,X,X,X,(vFJ),(vJC),X,X,(vFF),(hFF,vJE),O,O,X,(hFH),O,F,O,O,(vD),(hFI),O,C,(hE,vH),D,O,X,(hJC),O,O,O,A,X,(hFG),O,J,X,X','7,X,X,X,X,X,(vDE),(vBB),X,(vC),(vDF),X,(hBF),O,O,(hH),O,O,(vE),(hH,vBI),B,O,(hDF),O,O,O,O,D,(vE),X,(hDI,vBE),O,O,C,O,B,(hBF),O,A,X,(hG),E,D,(hG),O,O,X,X,X,X','7,X,(vJ),(vFH),X,X,X,X,(hHH),F,A,X,X,(vGE),(vA),(hI),O,O,(vC),(hF,vD),O,O,X,(hHC,vF),H,O,O,O,O,(hGJ),O,O,O,O,O,(vE),(hE),O,O,X,(hHI),O,O,X,X,X,X,(hA),O,O','7,X,X,(vCD),(vCB),(vF),X,X,X,(hCA,vCJ),O,O,O,(vFH),X,(hCD),O,O,O,O,O,(vCB),(hH),O,O,X,(hI),O,O,(hCE),O,B,(vCE),(hCH,vCI),O,G,X,(hFA),O,G,O,O,O,X,X,(hBC),H,O,O,X','6,X,X,X,X,(vHD),(vHH),X,X,X,(hA,vHH),H,I,X,X,(hHJ,vIG),O,C,O,X,(hHC,vE),O,O,O,X,(hIG),J,O,O,X,X,(hHF),O,O,X,X,X','6,X,X,(vFD),(vJB),X,X,X,(hH,vH),O,O,(vJD),X,(hFH),O,O,O,O,(vJI),(hJD),O,O,(hJD,vG),J,E,X,(hJD),O,O,O,O,X,X,(hB),A,O,X','6,X,X,X,(vC),(vDC),X,X,(vF),(hHB,vDI),O,O,(vDJ),(hDG),O,O,E,O,O,(hHA),O,O,(hHD,vG),O,O,(hEJ),O,O,F,O,O,X,(hJ),O,O,X,X','7,X,X,X,X,X,(vEJ),(vG),X,X,X,X,(hD,vI),C,O,X,X,(vEG),(hFE,vFE),O,O,O,X,(hFD),O,O,O,O,X,X,(hEC,vFI),O,O,O,O,X,(hEC),B,O,H,X,X,X,(hJ),O,O,X,X,X,X','7,X,(vI),(vAC),X,X,(vAI),(vCG),(hB),O,I,X,(hCB,vCD),O,O,(hH),A,D,(hCD,vAF),O,O,O,X,(hAC),O,O,O,O,X,X,(hCF,vCC),O,O,O,O,(vB),(hCB),O,O,O,(hCF),O,O,(hCB),O,J,X,(hB),O,O','6,X,X,X,(vJB),(vIG),X,X,(vA),(hJI,vJC),O,F,X,(hJB),O,O,O,O,(vJE),(hJD),B,O,(hJB,vD),O,H,X,(hJG),O,I,O,O,X,(hA),O,E,X,X','7,X,X,X,X,(vCD),(vCC),(vB),X,X,X,(hCC,vEC),O,I,O,X,X,(hCH),C,O,O,O,X,X,(hCA),F,O,X,X,X,(vA),(hCH,vCE),O,E,X,X,(hGA),C,O,O,O,X,X,(hCE),O,O,O,X,X,X','6,X,X,X,X,(vJI),(vA),X,X,(vJH),(hJE,vJI),O,G,X,(hJE),F,O,O,D,X,(hC,vB),O,E,O,X,(hJH),O,O,O,O,X,(hJD),O,E,X,X,X','6,X,X,X,X,(vAJ),(vAJ),X,X,X,(hAF,vGB),O,O,X,X,(hAE,vD),O,O,O,X,(hAJ,vF),O,J,O,X,(hAF),O,O,H,X,X,(hB),O,I,X,X,X','7,X,X,X,X,(vH),(vIE),X,X,X,X,(hA,vA),O,O,X,X,(vID),(hF,vCH),O,O,A,(vIE),(hIH),O,O,O,(hIA,vIH),O,O,(hIE),O,O,(hIG,vIA),B,O,O,X,(hIF),O,G,A,X,X,X,(hIE),O,D,X,X,X','7,X,(vEF),(vB),(vFC),X,X,X,(hH),O,O,O,(vEA),X,X,(hED),C,O,O,O,X,X,X,X,(hEG),O,F,X,X,X,X,(hEI),O,O,(vEH),(vI),X,X,(hFH),O,O,O,O,X,X,X,(hEE),O,I,O','6,X,(vHI),(vDG),X,X,X,(hHE),J,O,(vDG),X,X,(hHC),H,O,O,(vHA),X,X,(hDH),F,O,G,(vHE),X,X,(hHC),O,O,O,X,X,X,(hHE),O,O','6,X,X,(vAD),(vAE),X,X,X,(hAA),O,O,(vAD),(vAA),X,(hAI,vI),O,F,D,J,(hC),A,O,(hB,vJ),A,E,(hAB),O,I,C,J,X,X,X,(hI),O,H,X','6,X,X,(vDA),(vE),X,X,X,(hJ,vDE),O,F,(vGG),X,(hDJ),O,O,O,O,(vC),(hDD),O,O,(hJ,vI),O,O,X,(hGG),O,D,O,O,X,X,(hDA),G,B,X','7,X,X,(vJD),(vG),(vI),X,X,X,(hG),O,O,H,(vEB),(vEF),X,(hEB),O,O,B,O,J,X,(hEJ,vA),O,H,(hEE,vEA),O,O,(hA),O,O,(hEJ,vG),O,O,X,(hJF),O,O,O,O,O,X,X,X,(hG),F,O,O,X','6,X,X,X,X,(vEJ),(vG),X,X,X,(hDE,vF),O,O,X,X,(hDJ,vF),O,O,O,X,(hA,vDA),O,O,O,X,(hDI),B,O,O,X,X,(hDE),C,O,X,X,X','6,X,X,(vAC),(vD),X,X,X,(hD,vEI),O,O,(vBC),X,(hBA),O,O,O,O,(vH),(hEF),O,O,(hEI,vF),O,O,X,(hEF),O,O,A,O,X,X,(hEE),G,D,X','6,X,X,(vGB),(vD),X,X,X,(hGG),A,C,(vGJ),(vC),X,(hGG,vGC),O,O,O,J,(hGH),O,O,(hE,vI),G,H,(hHF),O,H,O,O,X,X,X,(hE),O,O,X','6,X,X,(vIJ),(vCD),X,X,X,(hCD),O,O,(vCI),(vCG),X,(hIH,vCC),G,O,O,O,(hCE),O,I,(hCH,vCD),G,O,(hIC),B,D,O,O,X,X,X,(hA),O,O,X','7,X,(vII),(vDH),(vID),X,X,X,(hIG),O,O,O,X,X,X,(hDA),O,C,J,(vII),X,X,X,(hID),F,O,O,(vDH),X,X,X,(hID),O,O,O,(vID),X,X,X,(hIE),A,O,O,X,X,X,(hDD),O,O,O','7,X,(vEB),(vF),X,X,X,X,(hED),O,O,(vAJ),(vED),(vD),X,(hIB),O,O,O,G,O,X,X,X,(hF,vA),O,O,O,X,X,(hED),O,O,F,(vA),(vEB),X,(hIE),O,H,O,O,O,X,X,X,X,(hEE),O,O','7,X,X,X,X,(vCA),(vCE),(vB),X,X,X,(hF),O,O,O,X,X,X,(hJG,vCD),I,O,O,X,X,(hF,vB),O,O,O,X,X,(hJI,vCI),O,F,O,X,X,(hD),O,O,O,X,X,X,(hCI),O,O,O,X,X,X','6,X,(vJI),(vI),X,X,X,(hH),O,O,(vD),X,X,(hJA),F,O,O,(vJH),X,X,(hJI),C,G,O,(vJJ),X,X,(hD),O,O,O,X,X,X,(hJE),O,O','6,X,X,X,(vDC),(vAE),X,X,X,(hI),O,B,(vI),X,(vC),(hJ,vDE),O,O,O,(hAF),A,D,O,O,O,(hI),O,O,G,X,X,X,(hDA),H,O,X,X','7,X,X,X,(vFD),(vAF),X,X,X,(vFD),(hFE,vFA),B,O,X,X,(hHI),O,O,O,O,(vFF),X,(hFI),O,O,(hC,vG),O,H,(vFA),X,(hE),O,O,(hFB,vC),O,O,X,X,(hFJ),O,G,O,O,X,X,(hH),O,O,X,X','7,X,X,X,X,(vD),(vHD),X,X,X,(vDH),(hA,vJJ),O,O,(vE),X,(hHB,vJH),O,O,O,E,J,(hJE),H,O,O,(hD,vF),O,O,(hJG),E,O,(hJE,vJG),C,O,O,(hHH),J,O,O,O,O,X,X,(hJJ),O,O,X,X,X','7,X,X,X,X,(vBA),(vEB),X,X,X,(vBG),(hC,vBB),O,O,X,X,(hBD,vBA),O,O,O,O,(vBJ),(hBC),O,O,O,(hBG,vBD),A,O,(hBB),O,O,(hEE,vBF),O,O,D,X,(hBJ),O,O,O,I,X,X,(hBD),O,O,X,X,X','7,X,X,X,X,X,(vDG),(vC),X,(vB),(vFH),X,(hC),E,O,(hA),O,O,(vDD),(hH,vDB),O,O,(hDA),C,O,O,O,O,(vE),X,(hFH,vDE),O,O,H,O,F,(hDH),O,O,X,(hDI),O,O,(hJ),O,O,X,X,X,X','6,X,(vB),(vE),X,X,X,(hA),D,O,(vA),X,X,(hH),O,C,O,(vIG),X,X,(hDI),O,O,O,(vDF),X,X,(hIF),O,O,O,X,X,X,(hH),O,O','7,X,(vHF),(vC),X,X,(vC),(vHF),(hC),O,O,(vBC),(hA,vBF),O,O,(hBE),O,O,O,O,O,O,X,X,(hHD),A,O,X,X,X,(vD),(hJ,vHA),O,O,(vHI),(vC),(hCH),J,O,O,O,O,B,(hHH),O,O,X,(hE),O,O','6,X,X,X,(vJ),(vDA),X,X,(vFD),(hB,vFE),O,O,(vDA),(hDJ),O,O,O,O,O,(hDE),O,O,(hDA,vC),O,H,(hBA),O,I,O,G,O,X,(hJ),E,O,X,X','6,X,(vGA),(vA),X,X,X,(hGE),O,O,(vGD),X,X,(hGA),O,G,A,(vED),X,X,(hGE),O,O,O,(vGD),X,X,(hEB),C,H,F,X,X,X,(hGE),A,I','6,X,(vIC),(vFD),X,X,X,(hIG),O,C,(vIB),X,X,(hFJ),O,O,O,(vII),X,X,(hIE),O,O,F,(vIA),X,X,(hIJ),F,I,O,X,X,X,(hIC),O,O','6,X,X,X,(vJG),(vHH),X,X,X,(hHA),O,O,(vHD),X,(vE),(hJF,vHJ),O,O,O,(hHB),F,O,D,O,O,(hE),O,J,O,X,X,X,(hHE),I,O,X,X','7,X,X,X,(vGG),(vI),(vEC),X,X,(vBH),(hJ,vBI),O,O,O,X,(hBJ),O,O,O,O,O,(vJ),(hGJ),O,O,X,(hA),O,O,(hGC),O,O,(vC),(hGB,vGJ),O,O,X,(hBF),O,O,O,O,B,X,(hBH),O,O,O,X,X','7,X,X,X,X,X,(vD),(vHB),X,X,(vG),(vFC),(hHA,vAI),O,O,X,(hAB),O,O,O,O,O,X,(hAD),O,O,O,(vHB),X,X,(vF),(hAF,vHI),O,O,O,X,(hAB),O,O,O,O,O,X,(hB),O,E,X,X,X,X','6,X,(vBC),(vDF),X,X,X,(hBE),O,O,(vDB),X,X,(hDG),O,J,O,(vC),X,X,(hBI),O,O,O,(vBB),X,X,(hBA),O,O,D,X,X,X,(hBG),F,O','6,X,X,X,(vH),(vDC),(vGA),X,X,(hA,vIE),O,O,O,X,(hIG,vGG),O,O,O,O,(hF),O,O,(hGF,vJ),J,O,(hGA),O,O,O,O,X,(hIE),O,O,O,X,X','6,X,(vHC),(vHJ),X,X,X,(hHC),A,B,(vA),X,X,(hHI),O,O,O,(vHA),X,X,(hD),F,O,O,(vB),X,X,(hII),G,O,O,X,X,X,(hB),O,O','7,X,(vH),(vJA),X,X,(vIE),(vJI),(hJC),O,O,(vDG),(hJE,vIG),O,O,(hDD),I,O,O,O,O,O,X,X,(hII,vIG),O,O,O,X,X,(hIE,vJA),O,O,O,(vB),(vJI),(hDG),C,O,O,O,O,O,(hJF),O,O,X,(hH),O,O','7,X,(vHH),(vBE),X,X,X,X,(hE),B,O,X,(vHF),(vBJ),X,(hHI),C,O,(hJ,vHI),O,O,X,X,(hBC),D,O,O,O,X,X,(hHH),O,O,D,O,(vHF),X,(hHD),F,O,(hHD),G,O,X,X,X,X,(hHE),O,O','7,X,X,X,X,X,(vIF),(vI),X,X,X,X,(hB,vGF),O,O,X,X,(vEG),(hGG,vB),O,O,O,X,(hGJ),O,O,O,H,X,X,(hGA,vA),O,O,O,O,X,(hGC),I,H,O,X,X,X,(hH),G,J,X,X,X,X','7,X,X,X,X,X,(vJF),(vJF),X,X,X,X,(hJD),A,O,X,X,(vBG),(vJB),(hI,vI),O,O,X,(hBD,vJF),F,O,O,E,O,(hIB),O,O,O,O,C,X,(hJG),O,B,X,X,X,X,(hI),O,J,X,X,X,X','6,X,X,(vEI),(vC),X,X,X,(hH,vGG),O,O,(vGD),X,(hBJ),O,O,O,O,(vD),(hGI),O,O,(hD,vD),E,G,X,(hBG),O,O,A,O,X,X,(hJ),O,O,X','7,X,X,X,X,(vFI),(vJF),X,X,X,X,(hJH),O,O,(vJC),X,X,X,(hEE,vEC),O,O,O,X,(vJE),(hED,vEF),O,O,O,G,(hJB),O,O,O,O,X,X,(hEH),O,O,G,X,X,X,X,(hJG),O,O,X,X,X','7,X,X,X,(vJ),(vEI),X,X,X,X,(hJ,vEC),O,A,(vBD),X,X,(hHC,vEA),O,O,O,I,(vF),(hEE),O,O,(hEE,vHD),B,J,O,(hHE),O,O,O,(hG,vED),O,O,X,(hHD),O,O,O,O,X,X,X,(hEA),O,O,X,X','7,X,X,X,X,X,(vFH),(vED),X,X,X,X,(hEC,vEA),O,O,X,X,(vED),(hFI,vEH),O,O,O,X,(hEE),O,O,A,D,X,X,(hFB,vJ),O,O,O,J,X,(hFI),O,O,O,X,X,X,(hI),O,A,X,X,X,X','6,X,(vB),(vHI),X,X,X,(hHH),O,O,(vHJ),(vGA),X,(hHH),O,O,O,I,X,X,(hGE),O,A,O,(vHE),X,(hHJ),H,B,F,D,X,X,X,(hHJ),O,C'
+]
+```
+
## --seed-contents--
```js
-function euler424() {
+function kakuro(puzzles) {
return true;
}
-euler424();
+const testPuzzles = [
+ '6,X,X,(vCC),(vI),X,X,X,(hH),B,O,(vCA),(vJE),X,(hFE,vD),O,O,O,O,(hA),O,I,(hJC,vB),O,O,(hJC),H,O,O,O,X,X,X,(hJE),O,O,X','7,X,X,X,X,(vJJ),(vCD),X,X,X,X,(hCG),O,O,(vCE),X,X,X,(hCI,vJB),C,O,O,X,(vB),(hJF,vJF),O,F,O,O,(hJA),F,G,O,O,X,X,(hCA),O,A,O,X,X,X,X,(hCF),O,O,X,X,X','7,X,X,X,(vE),(vCB),X,X,X,X,(hJ),O,O,(vCA),X,X,(vCH),(hCG,vCJ),O,O,O,(vJ),(hCE),O,O,O,(hJ,vGG),O,O,(hD),I,O,(hCD,vCB),H,O,O,X,(hCE),O,O,E,X,X,X,X,(hCE),O,O,X,X','6,X,X,X,(vEA),(vJF),X,X,X,(hI),O,O,(vJA),X,(vA),(hEI,vEB),O,O,O,(hIG),C,O,J,O,D,(hJD),O,O,O,X,X,X,(hJD),O,O,X,X','7,X,(vH),(vG),X,X,(vI),(vDH),(hG),B,O,(vDI),(hDB,vDE),O,O,(hBC),I,O,F,O,O,J,X,X,(hG),O,O,X,X,X,(vDG),(hH,vDD),O,O,(vDJ),(vC),(hBI),O,O,O,O,O,O,(hDJ),O,O,X,(hA),O,O','6,X,(vID),(vIJ),X,X,X,(hH),F,I,(vF),(vIA),X,(hIA),G,B,O,C,X,X,(hID),O,O,O,(vIF),X,(hIA),E,O,I,O,X,X,X,(hII),O,G','6,X,X,(vAF),(vAI),X,X,X,(hJ,vAC),O,B,(vGJ),X,(hGH),J,O,O,O,(vAF),(hAG),O,O,(hH,vF),A,D,X,(hGF),O,E,O,O,X,X,(hD),O,O,X','7,X,X,X,X,(vCE),(vGB),X,X,(vJG),(vCI),(hCD,vCJ),O,O,X,(hCI),O,O,O,O,B,(vJB),(hCF),O,O,O,(hCA,vH),O,O,(hCJ),O,O,(hJB,vCJ),O,O,O,X,(hJD),O,O,O,O,O,X,(hF),I,O,X,X,X','7,X,(vBB),(vBD),X,X,X,X,(hBB),C,E,(vEE),(vEC),X,X,(hBC),O,O,O,O,X,X,X,(hEF),H,O,A,(vJ),X,X,X,(hBD),O,O,O,(vI),X,X,(hBE),F,O,O,O,X,X,X,X,(hG),O,O','7,X,X,(vGG),(vGD),X,(vI),(vGI),X,(hGB),O,O,(hGH,vIC),O,O,X,(hGA),O,O,O,J,O,X,X,(hGI),O,O,X,X,X,(vGD),(hE,vE),O,O,(vGF),X,(hIH),O,O,O,O,O,X,(hE),A,O,(hGF),O,O,X','6,X,(vIJ),(vIE),X,X,X,(hF),O,C,(vIA),X,X,(hCA),O,O,D,(vIH),X,X,(hIB),E,O,O,(vF),X,X,(hD),O,A,O,X,X,X,(hID),O,G','6,X,(vAD),(vGI),(vI),X,X,(hB),O,O,O,(vAF),X,(hGC),O,O,O,O,(vGA),(hGE),O,O,(hJ,vB),O,O,X,(hGD),D,O,E,O,X,X,(hAI),O,C,O','6,X,X,X,(vAB),(vFA),X,X,X,(hHI),O,O,(vHJ),X,(vA),(hFJ,vHE),I,D,O,(hFH),O,O,O,O,O,(hHJ),O,O,O,X,X,X,(hC),O,J,X,X','7,X,X,X,(vJ),(vEF),X,X,X,X,(hI,vGD),C,E,(vEF),(vA),X,(hEH),O,O,O,O,O,X,(hH,vJ),O,O,(hJ,vEJ),O,O,(hD),O,A,(hEF,vEB),O,O,X,(hCC),O,O,A,O,O,X,X,X,(hH),O,O,X,X','7,X,X,X,(vAG),(vAJ),(vFH),X,X,X,(hFD),O,O,O,X,X,(vH),(hAJ,vAB),O,O,O,(vB),(hAH),O,H,O,(hC,vAI),O,O,(hE),O,O,(hAI,vAE),O,O,O,X,(hJ),O,O,O,X,X,X,(hFG),E,O,O,X,X','7,X,(vAI),(vHB),X,X,(vJE),(vAA),(hD),O,O,X,(hG),O,O,(hAJ),O,O,(vE),(hAA,vAI),O,O,X,(hHF),O,O,O,O,X,X,(hJF,vAE),O,O,O,J,(vH),(hAI),D,O,X,(hB),O,O,(hAG),O,O,X,(hAA),O,O','7,X,X,(vHJ),(vC),(vAF),X,X,X,(hHF),O,O,O,(vHI),(vHD),X,(hHB,vAB),O,O,O,O,E,(hAI),O,O,X,(hAB),O,O,(hD),O,O,(vAB),(hAI,vE),J,O,(hHH),O,O,O,B,O,X,X,X,(hG),O,A,O,X','6,X,X,(vDF),(vHE),X,X,X,(hHJ,vE),C,O,X,X,(hHI),O,O,O,(vDF),(vHH),(hFA),A,O,B,O,O,X,X,(hE),O,I,O,X,X,(hHH),O,O,X','6,X,(vA),(vA),X,X,X,(hE),O,O,(vCJ),X,X,(hG),O,O,O,(vHI),X,X,(hHC),O,O,H,(vB),X,X,(hCE),O,O,D,X,X,X,(hE),O,O','6,X,X,X,X,(vEH),(vEC),X,X,X,(hEB,vEJ),O,O,X,X,(hEC,vEF),O,O,B,X,(hDD,vEI),O,B,C,X,(hB),O,D,A,X,X,(hEC),O,O,X,X,X','6,X,X,X,X,(vIF),(vH),X,X,X,(hIJ,vGJ),B,I,X,X,(hIB,vIC),O,O,G,X,(hIA,vC),O,O,O,X,(hE),O,O,O,X,X,(hIA),E,O,X,X,X','7,X,(vC),(vFB),X,X,X,X,(hFH),O,O,(vFA),(vFJ),(vC),X,(hFJ),O,O,O,O,O,X,X,X,(hA,vJ),O,O,O,X,X,(hG),D,O,O,(vC),(vFC),X,(hBH),A,O,O,O,E,X,X,X,X,(hFH),O,I','6,X,X,(vFD),(vC),X,X,X,(hDH),E,F,(vDG),(vDD),X,(hDF,vDI),O,O,A,O,(hDG),O,O,(hDG,vDG),O,O,(hDJ),O,D,J,O,X,X,X,(hJ),E,O,X','6,X,X,X,(vE),(vGH),(vIC),X,X,(hD,vIG),O,O,A,X,(hIF,vJ),O,J,E,O,(hJ),O,D,(hGG,vGH),O,O,(hGG),O,O,O,O,X,(hIC),O,O,O,X,X','7,X,X,X,X,(vAG),(vJA),(vH),X,X,X,(hAJ,vDJ),O,O,O,X,X,(hJF),O,O,O,O,X,X,(hG),D,O,X,X,X,(vJH),(hJE,vJD),C,I,X,X,(hAE),B,O,O,O,X,X,(hAJ),O,O,E,X,X,X','7,X,X,X,X,(vGG),(vIA),(vGF),X,X,X,(hGF),O,O,D,X,X,X,(hGJ,vIB),O,O,O,X,X,(hGH,vGD),O,O,O,X,X,(hII,vC),O,J,O,X,X,(hIH),J,O,O,X,X,X,(hGE),O,I,O,X,X,X','6,X,X,(vFA),(vEC),X,X,X,(hI,vFI),F,O,X,X,(hDE),O,O,O,(vFF),(vFF),(hDI),G,J,O,F,O,X,X,(hFJ),O,D,O,X,X,(hFH),J,A,X','7,X,X,X,X,X,(vID),(vBB),X,X,X,X,(hBC),O,I,X,X,(vIH),(vBH),(hBF,vF),O,O,X,(hIE,vD),O,O,I,O,O,(hAG),O,O,O,O,F,X,(hA),O,O,X,X,X,X,(hD),O,O,X,X,X,X','7,X,(vCD),(vCC),X,X,X,X,(hE),B,C,(vCE),X,X,X,(hCD),O,O,O,(vE),(vCG),X,X,(hCH),O,O,O,O,X,X,(hFC),B,J,G,O,(vCC),X,X,X,(hCI),O,O,O,X,X,X,X,(hG),O,O','7,X,X,X,(vID),(vD),(vFB),X,X,X,(hIB,vID),O,O,O,X,X,(hJE,vIA),J,C,O,D,(vF),(hIB),O,O,X,(hIG),O,O,(hIJ),O,O,(vD),(hA,vID),O,O,X,(hJF),O,O,O,O,X,X,(hIE),O,O,O,X,X','7,X,X,(vAC),(vAH),X,X,X,X,(hD),O,O,(vAD),X,X,X,(hCH,vAD),O,O,O,(vAA),(vF),(hAC),O,H,(hAB,vAJ),O,O,A,(hAE),O,O,O,(hD,vAD),O,O,X,X,(hAC),O,O,O,X,X,X,X,(hG),O,O,X','6,X,X,(vBB),(vBE),X,X,X,(hBH),O,I,(vBG),(vBB),X,(hHE,vBD),H,D,O,O,(hBA),C,O,(hA,vG),O,O,(hBF),I,O,O,O,X,X,X,(hG),O,O,X','6,X,X,(vEC),(vD),X,X,X,(hD,vH),O,O,(vIB),X,(hIA),O,O,O,O,(vE),(hII),O,F,(hII,vIG),O,O,X,(hIH),O,O,O,O,X,X,(hIA),O,D,X','6,X,X,X,X,(vEH),(vEG),X,X,X,(hEB,vEF),O,O,X,X,(hAC,vG),O,B,O,X,(hEE,vEC),O,D,O,X,(hEE),O,O,O,X,X,(hEJ),D,O,X,X,X','6,X,(vD),(vB),X,X,X,(hA),O,O,(vE),X,X,(hE),A,O,O,(vCJ),X,X,(hCH),O,A,O,(vCI),X,X,(hB),O,D,O,X,X,X,(hCB),G,O','7,X,X,X,X,(vHJ),(vIF),(vIB),X,X,X,(hIH,vJI),O,O,J,X,X,(hIA),O,O,O,F,X,X,(hIG),O,C,X,X,X,(vD),(hA,vIB),O,J,X,X,(hHB),O,O,O,O,X,X,(hHB),O,O,O,X,X,X','7,X,X,X,(vBJ),(vIB),X,X,X,(vIF),(hBB,vBB),O,O,(vBA),X,(hIC),O,O,O,O,O,(vBA),(hBD),O,O,(hC,vC),O,O,O,(hBJ),E,O,O,(hBC,vBI),G,H,X,(hBA),O,O,O,O,O,X,X,(hBF),O,O,X,X','7,X,(vHI),(vHE),X,X,X,X,(hA),O,O,X,X,X,X,(hHG),O,O,(vHH),(vHE),(vIJ),X,(hHA),O,O,O,O,O,(vHI),X,(hID),H,O,O,B,I,X,X,X,X,(hHB),F,O,X,X,X,X,(hHE),O,H','6,X,X,(vAJ),(vAJ),X,X,X,(hAF,vAA),G,A,X,X,(hDA),O,O,O,(vDE),(vAH),(hAJ),O,O,O,O,I,X,X,(hAG),D,C,O,X,X,(hAI),O,O,X','6,X,X,X,X,(vDH),(vDA),X,X,X,(hG,vDG),O,E,X,X,(hBJ,vBC),O,O,O,X,(hBI,vE),O,E,O,X,(hE),O,O,O,X,X,(hDH),O,E,X,X,X','6,X,X,X,X,(vHJ),(vHH),X,X,X,(hHE,vCC),O,O,X,X,(hF,vG),A,O,O,X,(hHC,vHJ),O,B,O,X,(hHH),O,O,O,X,X,(hHI),O,O,X,X,X','7,X,(vJ),(vDG),X,X,(vDF),(vEF),(hC),E,B,X,(hEA),O,O,(hEE),C,O,(vH),(hED,vEF),A,O,X,(hEC),O,O,O,O,X,X,(hDD,vEF),O,O,O,O,(vEA),(hEJ),O,F,X,(hJ),O,O,(hEF),O,O,X,(hEF),O,O','7,X,X,X,(vCC),(vD),X,X,X,(vJE),(hI,vCH),O,O,(vBF),X,(hCC),O,O,O,O,A,(vJB),(hCB),G,O,O,(hJA,vJF),O,O,(hJA),O,O,(hG,vH),O,O,O,X,(hCE),O,O,O,O,O,X,X,(hH),O,O,X,X','7,X,X,(vEI),(vEB),(vG),X,X,X,(hEF),E,O,O,(vHE),X,X,(hEF,vH),O,O,O,O,(vEI),(hH),O,O,X,(hEH),O,B,(hG),O,O,(vG),(hEI,vED),O,O,X,(hAG),C,O,O,O,X,X,X,(hEE),O,O,O,X','6,X,X,X,X,(vJE),(vF),X,X,X,(hI,vJJ),O,O,X,X,(hEC,vJJ),H,O,O,X,(hF,vJB),O,O,O,X,(hJI),A,C,E,X,X,(hJD),O,J,X,X,X','6,X,X,X,(vH),(vAE),X,X,X,(hCB,vCJ),O,O,(vCB),X,(hCA,vD),O,O,O,O,(hD),C,O,(hCC,vJ),O,O,(hAB),A,O,F,O,X,X,(hB),G,O,X,X','6,X,X,(vEC),(vEG),X,X,X,(hEF),O,O,(vFC),(vEI),X,(hHJ,vJ),E,O,O,A,(hJ),O,O,(hEA,vEA),O,O,(hHH),O,O,O,B,X,X,X,(hEF),O,O,X','7,X,(vEI),(vEC),X,X,X,X,(hH),O,O,X,X,X,X,(hED),O,O,(vEB),(vEG),(vGB),X,(hEJ),O,O,O,O,O,(vD),X,(hIA),O,O,O,O,C,X,X,X,X,(hA),O,I,X,X,X,X,(hEB),A,O','7,X,X,X,(vF),(vG),(vIB),X,X,(vG),(hBA,vIH),J,I,D,X,(hBG),O,O,O,O,O,(vBG),(hA),O,O,X,(hE),O,O,(hBB),O,C,(vA),(hBI,vBE),O,O,X,(hBA),O,O,O,O,O,X,(hBF),O,O,O,X,X','7,X,X,(vEF),(vDI),X,X,X,X,(hDG),O,O,(vDA),X,X,X,(hEA,vG),O,O,O,(vEJ),(vJ),(hF),O,G,(hDH,vDI),O,O,F,(hED),O,O,O,(hDD,vB),O,O,X,X,(hDB),O,O,A,X,X,X,X,(hH),O,O,X','7,X,X,X,X,(vJH),(vD),(vAJ),X,X,X,(hAC,vDH),O,O,O,X,X,(hAA),O,O,O,O,X,X,(hC),F,O,X,X,X,(vC),(hAJ,vAA),I,H,X,X,(hJA),O,D,O,G,X,X,(hJB),O,C,O,X,X,X','6,X,X,X,(vDC),(vG),X,X,X,(hA),O,O,(vCH),X,(vCI),(hCB,vB),O,O,O,(hDF),O,H,O,O,O,(hH),O,O,O,X,X,X,(hH),J,O,X,X','6,X,X,(vCG),(vGA),X,X,X,(hE),O,O,(vGG),(vGB),X,(hCI,vF),O,O,O,I,(hGI),O,O,(hI,vD),O,A,(hGH),O,B,O,O,X,X,X,(hA),O,O,X','6,X,X,X,(vJ),(vHF),X,X,(vF),(hHG,vHD),O,A,X,(hHI),A,O,O,O,(vHE),(hB),G,O,(hD,vHE),O,F,X,(hGJ),O,O,O,O,X,(hHD),O,O,X,X','6,X,X,X,X,(vBD),(vD),X,X,X,(hD,vBB),O,O,X,X,(hI,vHD),O,O,O,X,(hHD,vBE),O,O,A,X,(hHF),C,O,G,X,X,(hBI),O,O,X,X,X','7,X,(vJ),(vFB),(vDB),X,X,X,(hFC),O,O,O,(vFE),X,X,(hFB),O,O,O,O,X,X,X,X,(hG),I,O,X,X,X,X,(hA),O,O,(vFG),(vE),X,X,(hDD),O,O,O,A,X,X,X,(hFD),D,E,J','6,X,X,X,(vAD),(vAH),X,X,(vB),(hF,vEB),O,O,X,(hED),O,O,O,O,(vD),(hD),O,O,(hJ,vI),O,O,X,(hEH),O,A,O,C,X,(hB),G,O,X,X','6,X,X,X,X,(vFG),(vFB),X,X,X,(hFD,vB),O,O,X,X,(hFG,vFG),O,O,O,X,(hI,vH),O,O,C,X,(hGA),E,H,O,X,X,(hD),O,G,X,X,X','7,X,X,X,(vBH),(vBB),X,X,X,X,(hBJ,vBJ),I,O,(vHE),(vI),X,(hBF,vBA),O,O,O,O,O,(hBE),O,D,X,(hA),O,O,(hBC),O,O,(vA),(hBB,vBH),O,O,(hDA),B,H,O,O,O,X,X,X,(hI),O,O,X,X','7,X,X,X,(vEC),(vD),X,X,X,(vJ),(hEB,vEJ),O,O,X,X,(hFC),O,O,O,F,(vEG),X,(hG),O,O,(hH,vFI),O,E,(vEH),X,(hEB),A,O,(hED,vJ),O,O,X,X,(hFI),O,O,O,O,X,X,(hED),O,O,X,X','6,X,(vGH),(vGG),X,X,X,(hGE),O,O,(vFI),(vGJ),X,(hGF),O,O,D,O,X,X,(hGB),O,C,O,(vGG),X,(hFG),O,O,O,O,X,X,X,(hE),O,I','7,X,X,X,(vF),(vGI),X,X,X,(vJ),(hB,vGA),H,G,X,X,(hHF),O,O,O,A,(vHH),X,(hB),O,O,(hGB,vGA),C,O,(vC),X,(hGC),O,O,(hGI,vGF),O,O,X,X,(hHB),O,E,O,O,X,X,(hA),O,O,X,X','7,X,X,X,X,X,(vED),(vIG),X,X,X,X,(hEC),O,O,X,X,(vAC),(vA),(hH,vEG),O,O,X,(hAE,vB),O,O,H,O,O,(hIJ),O,O,O,B,O,X,(hEC),O,O,X,X,X,X,(hEI),O,O,X,X,X,X','7,X,X,(vAI),(vAA),X,X,X,X,(hAD,vAG),O,O,(vAE),X,X,(hAH),O,O,O,O,(vBH),(vD),(hG),O,O,(hI,vE),O,O,O,(hAI),O,O,O,(hG,vAC),D,F,X,X,(hAH),O,O,O,O,X,X,X,(hAJ),O,O,X','7,X,X,(vGD),(vFB),(vJ),X,X,X,(hGD),O,O,O,(vFA),(vGG),X,(hFA),O,O,O,O,O,X,(hGE,vGF),O,O,(hH,vFB),O,O,(hH),O,G,(hGC,vD),O,G,X,(hEB),O,O,O,O,O,X,X,X,(hGC),O,A,O,X','6,X,X,(vAD),(vEE),X,X,X,(hEC),G,O,(vAJ),(vH),X,(hEC,vEG),O,A,O,O,(hEG),F,O,(hEG,vEG),O,O,(hAB),O,E,F,A,X,X,X,(hEG),O,O,X','6,X,X,X,X,(vIB),(vJ),X,X,X,(hB,vIJ),O,O,X,X,(hE,vIF),O,O,C,X,(hFC,vIF),O,A,O,X,(hG),O,O,H,X,X,(hIJ),O,O,X,X,X','6,X,X,X,(vIB),(vEB),X,X,X,(hD,vAE),O,O,(vE),X,(hIJ,vE),O,O,O,O,(hII),O,O,(hJ,vC),H,O,(hAE),O,O,G,J,X,X,(hC),O,O,X,X','6,X,X,(vFF),(vB),X,X,X,(hC,vI),O,J,(vJE),X,(hJJ),O,O,I,G,(vA),(hJJ),O,O,(hJD,vJE),O,O,X,(hJB),O,O,F,O,X,X,(hJH),C,J,X','7,X,X,X,(vEI),(vJI),X,X,X,X,(hJA),O,O,(vJE),(vJJ),X,X,(hJI,vJB),O,E,O,D,X,(hJI,vC),O,H,(hJB,vJE),O,O,(hB),O,O,(hF,vD),O,O,X,(hJB),O,O,O,O,X,X,X,X,(hJE),O,O,X,X','7,X,(vJB),(vFD),X,X,(vFE),(vH),(hJF),O,O,X,(hH),O,O,(hJC),O,O,(vH),(hJF,vJF),O,O,X,(hJI),H,O,O,O,X,X,(hFJ,vJJ),J,O,O,O,(vJA),(hA),G,O,X,(hJF),O,C,(hJC),O,O,X,(hD),O,O','7,X,(vI),(vDH),X,X,X,X,(hB),O,I,X,X,X,X,(hC),O,O,(vA),(vI),(vDJ),X,(hDH),O,B,O,O,O,(vDH),X,(hGG),O,O,O,J,O,X,X,X,X,(hHH),B,O,X,X,X,X,(hHE),O,O','6,X,X,(vDI),(vE),X,X,X,(hA,vDA),E,O,(vHI),X,(hHI),F,A,O,O,(vDF),(hDD),O,O,(hDJ,vDJ),O,O,X,(hDG),O,O,H,O,X,X,(hB),O,D,X','6,X,(vJ),(vDH),X,X,X,(hDA),G,O,(vDA),(vDB),X,(hDB),O,O,I,F,X,X,(hG),O,F,O,(vDI),X,(hED),G,O,O,F,X,X,X,(hDE),O,H','6,X,X,(vCJ),(vD),X,X,X,(hG),O,O,(vAD),(vAE),X,(hCC,vI),O,O,A,O,(hJ),O,F,(hAD,vAD),I,H,(hCD),O,O,O,F,X,X,X,(hAJ),O,G,X','7,X,X,X,X,(vEF),(vEC),(vF),X,X,X,(hED,vEB),O,O,O,X,X,(hEB),O,O,O,O,X,X,(hC),O,D,X,X,X,(vI),(hB,vEE),O,O,X,X,(hEB),E,H,D,O,X,X,(hHJ),O,G,O,X,X,X','7,X,X,X,X,(vJF),(vIC),X,X,X,(vIA),(hD,vJE),O,O,X,X,(hIJ,vD),J,O,O,D,(vG),(hJC),I,O,O,(hJA,vC),O,O,(hJF),J,C,(hJF,vJE),O,O,O,X,(hIB),O,O,O,O,X,X,(hJF),O,O,X,X,X','6,X,(vH),(vJE),X,X,X,(hC),J,O,(vJJ),(vJC),X,(hJJ),A,I,O,H,X,X,(hD),O,O,A,(vC),X,(hAI),F,B,O,O,X,X,X,(hC),J,O','7,X,(vA),(vEE),X,X,(vD),(vF),(hEC),O,O,(vIH),(hI,vEB),O,O,(hBD),O,O,O,O,F,O,X,X,(hA),O,O,X,X,X,(vJ),(hEJ,vEG),F,O,(vA),(vG),(hBG),O,O,O,O,O,O,(hEH),O,O,X,(hG),O,O','6,X,X,X,(vFG),(vFC),X,X,(vE),(hFE,vFF),A,O,X,(hBF),O,O,O,O,(vH),(hE),O,O,(hD,vFF),I,O,X,(hFF),O,O,E,D,X,(hFI),O,O,X,X','6,X,X,(vHA),(vFH),X,X,X,(hFF),O,O,(vFH),(vE),X,(hDI,vFG),O,O,O,O,(hFG),B,O,(hC,vFB),O,O,(hDC),O,G,O,F,X,X,X,(hFF),O,O,X','7,X,X,(vBE),(vBB),(vA),X,X,X,(hH),O,O,O,(vBA),(vH),X,(hGI,vBB),O,J,O,O,O,(hBG),O,O,X,(hI),O,O,(hC),O,O,(vBG),(hE,vBD),H,C,(hBI),O,O,O,O,O,X,X,X,(hGG),O,O,O,X','7,X,X,X,X,X,(vHC),(vF),X,X,X,X,(hF,vC),O,E,X,X,(vEJ),(hEF,vEG),F,O,H,X,(hHD),C,O,O,O,X,X,(hHC,vI),A,O,O,O,X,(hJ),D,O,O,X,X,X,(hF),O,O,X,X,X,X','6,X,X,(vH),(vDC),X,X,X,(hCI,vCD),O,O,X,X,(hH),O,O,O,(vCA),(vCB),(hCJ),O,I,O,D,E,X,X,(hDI),E,H,O,X,X,(hG),O,O,X','7,X,X,X,X,(vJ),(vHE),X,X,X,X,(hHA,vHF),O,B,(vHE),X,X,(hEC,vHG),O,O,O,O,X,(hHE,vHG),O,O,(hA,vHB),O,O,(hJ),O,O,(hHE,vJ),O,O,X,(hED),O,J,O,O,X,X,X,(hB),O,O,X,X,X','6,X,X,(vJG),(vA),X,X,X,(hI),B,O,(vJC),(vJH),X,(hJH,vJC),O,E,O,O,(hB),O,O,(hJJ,vF),O,O,(hCE),O,O,D,I,X,X,X,(hB),O,H,X','6,X,X,X,X,(vDG),(vHH),X,X,(vDH),(hJ,vHB),O,O,X,(hJF),O,O,O,O,X,(hHF,vE),O,O,O,X,(hDJ),H,O,O,I,X,(hHC),G,O,X,X,X','7,X,(vAI),(vHC),X,X,X,X,(hD),O,G,X,X,(vHI),(vG),(hAJ),O,O,(vB),(hH,vAH),O,O,X,(hHF,vH),O,O,F,O,O,(hCA),O,O,O,O,O,(vF),(hH),O,O,X,(hG),O,O,X,X,X,X,(hAH),O,O','7,X,X,X,X,(vFG),(vFI),X,X,X,X,(hFI,vFB),O,O,(vFJ),X,(vFA),(hFG,vGA),O,B,O,O,(hIB),O,O,O,(hH,vJ),O,O,(hJ),O,O,(hFD,vD),O,C,O,(hII),O,O,O,O,X,X,X,(hE),O,O,X,X,X','7,X,X,X,(vI),(vEG),(vFD),X,X,(vED),(hA,vEB),O,O,O,X,(hJC),O,O,A,O,O,X,(hEG),O,O,(hEG,vEC),O,O,(vB),X,(hH),O,O,(hJ,vEB),O,O,X,(hEI),O,O,O,O,J,X,(hFF),O,H,O,X,X','6,X,X,(vEI),(vEB),X,X,X,(hEC,vB),O,O,(vEB),X,(hHC),J,O,O,F,(vEC),(hH),O,O,(hB,vEC),O,O,X,(hEH),O,O,O,O,X,X,(hEA),D,O,X','6,X,X,(vAF),(vBF),X,X,X,(hBI),O,G,(vAD),(vBD),X,(hBI,vF),O,J,O,E,(hBB),A,G,(hBI,vBI),O,H,(hAJ),B,O,O,O,X,X,X,(hBA),O,O,X','6,X,(vCB),(vJ),X,X,X,(hCE),A,O,(vCI),X,X,(hCG),D,O,O,(vCC),X,X,(hCA),O,O,O,(vB),X,X,(hB),O,E,G,X,X,X,(hG),O,H','7,X,X,X,X,X,(vFI),(vHG),X,X,X,X,(hHJ,vHH),O,O,X,X,(vHC),(hHD,vHG),O,O,O,X,(hHH),O,O,O,O,X,X,(hFE,vHC),O,O,O,D,X,(hHE),H,O,O,X,X,X,(hHE),I,A,X,X,X,X','7,X,X,(vFA),(vC),X,X,X,X,(hE),O,B,(vAC),(vGJ),X,X,(hFF,vG),O,O,O,O,(vAI),(hAA),O,D,(hAB,vAC),O,O,O,(hAH),O,O,O,(hAB,vAB),O,O,X,(hFJ),O,O,O,O,X,X,X,X,(hAH),O,J,X','7,X,X,X,(vIF),(vIB),X,X,X,X,(hID),O,O,(vC),X,X,(vIF),(hIH,vEE),O,O,O,(vII),(hEB),O,O,O,(hIB,vIF),D,J,(hIF),O,O,(hII,vIE),O,O,O,X,(hJ),O,G,O,X,X,X,X,(hIF),O,O,X,X','7,X,(vDJ),(vDB),X,X,X,X,(hDJ),O,O,(vDF),(vCE),(vI),X,(hCH),O,O,O,O,O,X,X,X,(hDC,vDB),O,A,G,X,X,(hFE),O,O,O,(vDJ),(vI),X,(hCF),O,O,O,O,O,X,X,X,X,(hDE),O,O','6,X,X,(vCI),(vJ),X,X,X,(hA),O,E,(vEG),(vCC),X,(hEG,vCF),O,O,D,O,(hJ),C,G,(hB,vCC),C,O,(hED),O,O,A,O,X,X,X,(hCD),O,O,X','6,X,X,X,(vG),(vFE),X,X,X,(hG,vBC),O,O,(vBC),X,(hFJ,vC),O,E,O,I,(hG),O,O,(hBF,vBC),O,O,(hEJ),O,O,O,O,X,X,(hBA),D,O,X,X','6,X,X,(vAJ),(vE),X,X,X,(hFH,vH),O,O,(vFA),X,(hFH),O,O,O,O,(vFI),(hI),O,C,(hFI,vFD),O,O,X,(hAC),O,O,I,G,X,X,(hC),O,O,X','6,X,X,X,(vE),(vCJ),X,X,(vFF),(hA,vHJ),C,O,X,(hFC),O,O,O,F,(vD),(hFI),O,O,(hFE,vFJ),O,O,X,(hFG),O,O,O,O,X,(hFD),O,O,X,X','7,X,X,X,(vBJ),(vBI),X,X,X,X,(hA),O,O,(vCH),(vBJ),X,(vCJ),(hCB,vG),H,O,I,B,(hBA),O,O,O,(hBE,vG),O,O,(hBB),F,O,(hBE,vBI),O,O,O,(hBI),O,O,O,O,X,X,X,X,(hBC),O,O,X,X','6,X,X,(vCJ),(vD),X,X,X,(hH),O,O,(vBD),(vJ),X,(hCI,vCH),O,J,F,O,(hCG),O,E,(hA,vCD),O,F,(hBF),O,O,O,O,X,X,X,(hCG),O,O,X','6,X,X,X,X,(vJB),(vG),X,X,X,(hA,vH),I,O,X,X,(hCD,vCG),O,O,B,X,(hCF,vCD),O,O,O,X,(hJD),O,H,O,X,X,(hB),O,O,X,X,X','7,X,(vI),(vEH),X,X,(vCC),(vF),(hG),O,O,X,(hH),O,C,(hJ),O,O,(vAD),(hAG,vG),O,O,X,(hEI),F,O,O,O,X,X,(hAD,vAB),O,O,I,O,(vI),(hG),O,O,X,(hC),O,O,(hAJ),O,O,X,(hAA),O,O','7,X,X,X,X,X,(vEC),(vEA),X,X,X,X,(hB),O,O,X,X,(vDF),(vEH),(hEC,vH),H,O,X,(hEA,vI),O,B,E,O,O,(hDB),E,J,O,D,O,X,(hEH),O,A,X,X,X,X,(hI),O,O,X,X,X,X','6,X,X,X,(vBC),(vBC),X,X,X,(hBJ,vEC),H,O,(vBB),X,(hBE,vA),D,J,O,O,(hC),O,O,(hBE,vBG),O,O,(hEG),H,O,B,O,X,X,(hBI),O,O,X,X','7,X,(vE),(vCF),X,X,X,X,(hJ),O,O,(vFB),X,X,X,(hCJ),O,O,A,(vFE),(vCA),X,X,(hIH),O,O,O,O,X,X,(hFF),O,O,O,B,(vFA),X,X,X,(hCI),O,O,O,X,X,X,X,(hFG),O,O','7,X,X,X,X,(vBH),(vH),X,X,X,X,(hI),O,O,(vE),X,X,X,(hJG,vBF),O,O,O,X,(vH),(hBA,vJE),O,O,O,O,(hDG),O,O,O,O,X,X,(hBG),O,F,O,X,X,X,X,(hA),J,O,X,X,X','7,X,X,X,X,X,(vIC),(vA),X,X,X,(vII),(hG,vIH),F,I,X,X,(hIG),O,O,O,D,X,X,(hC,vC),O,O,J,X,X,(hIF,vE),O,G,A,X,X,(hIH),O,O,O,O,X,X,(hJ),F,D,X,X,X,X','7,X,X,X,(vH),(vCJ),X,X,X,(vCG),(hCB,vEG),O,O,X,X,(hEF),O,I,O,O,(vCI),X,(hCD),O,J,(hCB,vCJ),E,O,(vCC),X,(hCE),O,O,(hCI,vH),O,O,X,X,(hEB),O,O,O,O,X,X,(hD),O,O,X,X','6,X,(vGA),(vBE),X,X,X,(hGC),H,O,(vGF),X,X,(hGG),O,O,O,(vGD),X,X,(hBG),O,J,O,(vGD),X,X,(hGD),O,O,E,X,X,X,(hGH),O,O','6,X,X,(vEE),(vEJ),X,X,X,(hI,vEF),O,O,(vEH),X,(hEA),O,O,O,E,(vB),(hEE),O,O,(hB,vB),O,O,X,(hEG),A,O,I,O,X,X,(hA),D,B,X','6,X,(vJ),(vHA),X,X,X,(hHH),D,O,(vHG),X,X,(hI),O,O,F,(vDG),X,X,(hDJ),O,O,O,(vHF),X,X,(hHF),O,O,E,X,X,X,(hHE),B,O','6,X,X,X,X,(vFI),(vE),X,X,X,(hH,vA),J,I,X,X,(hGF,vD),O,O,F,X,(hGF,vC),O,O,A,X,(hD),O,O,O,X,X,(hD),O,O,X,X,X','7,X,X,(vHG),(vE),X,X,X,X,(hGD),O,O,(vGA),(vHC),(vAJ),X,(hGD,vAC),O,O,O,O,O,(hGC),O,O,(hAA,vGC),O,O,O,(hAC),O,O,F,(hGD,vD),O,O,(hHB),O,O,O,O,O,X,X,X,X,(hI),O,D,X','7,X,X,(vBG),(vBJ),X,(vBD),(vE),X,(hC),O,O,(hBB,vAG),O,C,X,(hBE),O,O,O,O,D,X,(hBG),O,O,O,(vBE),X,X,(vE),(hBI,vJ),O,O,O,X,(hCG),F,G,O,O,O,X,(hC),O,O,(hBJ),O,O,X','7,X,X,X,X,X,(vEA),(vJJ),X,X,(vED),(vJI),(hF),O,O,X,(hB),O,O,(hJH,vB),O,O,X,(hED),O,B,O,O,X,X,(hJI,vJI),O,O,C,O,X,(hJH),O,O,(hJJ),O,O,X,(hF),J,E,X,X,X,X','6,X,(vF),(vED),X,X,X,(hEI),O,O,(vEA),X,X,(hEJ),O,O,J,(vB),X,X,(hB),O,O,O,(vG),X,X,(hJ),B,O,C,X,X,X,(hF),O,E','6,X,X,X,X,(vCH),(vCD),X,X,X,(hG,vCH),O,O,X,X,(hCH,vCI),O,O,O,X,(hFA,vCE),O,O,J,X,(hFF),O,O,O,X,X,(hI),F,C,X,X,X','6,X,X,(vCH),(vA),X,X,X,(hE,vE),D,O,(vAG),(vHC),(hHB),O,O,C,O,I,(hHA),O,O,(hE,vJ),O,O,(hCH),A,O,O,O,O,X,X,(hHD),O,O,X','7,X,(vF),(vDG),(vGD),X,X,X,(hA),O,D,O,(vI),(vGE),X,(hDG),O,C,O,O,O,X,(hGC),H,O,(hH,vA),O,O,(vGF),X,(hH),O,O,(hGB,vGD),O,O,X,(hDH),O,D,O,O,O,X,X,X,(hA),O,O,G','7,X,X,X,X,(vIG),(vIG),X,X,X,X,(hCJ),O,O,(vCE),X,X,X,(hIE,vEA),O,O,O,X,(vJ),(hEA,vIE),O,O,O,O,(hCH),O,F,O,O,X,X,(hCH),I,B,O,X,X,X,X,(hCH),O,O,X,X,X','7,X,X,X,X,(vJ),(vDB),X,X,X,X,(hDG,vH),O,O,X,X,(vB),(hJ,vEB),E,O,O,(vG),(hDJ),O,F,D,(hI,vDC),O,O,(hA),O,O,(hJ,vA),O,O,I,X,(hDA),O,O,O,X,X,X,(hDH),O,O,X,X,X','6,X,X,X,(vEE),(vJA),(vEI),X,X,(hD,vEE),O,F,O,X,(hED,vEC),O,O,O,O,(hJ),O,O,(hEH,vEI),O,O,(hIB),O,O,O,O,X,(hII),O,O,O,X,X','6,X,(vE),(vGH),X,X,X,(hC),O,J,(vFJ),X,X,(hGH),O,O,O,(vJ),X,X,(hFA),B,O,I,(vFF),X,X,(hFG),O,O,O,X,X,X,(hB),F,G','6,X,X,(vIF),(vIJ),X,X,X,(hD,vIC),O,O,X,X,(hIB),O,O,O,(vIG),(vA),(hBF),O,O,F,I,O,X,X,(hE),D,O,F,X,X,(hIF),O,C,X','7,X,(vCD),(vB),X,X,X,X,(hII),O,D,(vA),X,X,X,(hIJ),O,O,O,(vII),X,X,(hID),O,O,O,O,(vIJ),(vCJ),X,X,(hCA),H,O,F,O,X,X,X,(hA),O,O,G,X,X,X,X,(hII),J,O','7,X,(vC),(vFF),X,X,(vHF),(vD),(hFD),O,O,(vHG),(hA,vFJ),O,O,(hHF),O,O,O,O,O,O,X,X,(hFG,vFH),O,O,O,X,X,(hFB,vI),O,O,O,(vFB),(vB),(hIG),O,O,O,O,D,J,(hG),O,I,X,(hFE),O,O','7,X,(vHJ),(vDE),X,X,(vDI),(vHH),(hHG),O,J,(vHJ),(hJ),O,O,(hHE),O,O,O,(hHJ,vB),O,O,X,(hHH),O,O,O,O,X,X,(hDJ,vHA),D,O,E,O,(vF),(hHJ),O,O,(hA),O,O,E,(hHA),O,O,X,(hI),O,O','7,X,(vEH),(vFA),X,X,X,X,(hEB),O,O,(vFA),X,X,X,(hFD),O,O,O,(vEE),(vID),X,X,(hFB),O,O,O,O,X,X,(hFJ),O,O,O,O,(vEE),X,X,X,(hJ),O,B,O,X,X,X,X,(hEH),C,O','6,X,(vJ),(vE),X,X,X,(hA),B,C,(vCJ),X,X,(hCG),O,O,O,(vCD),X,X,(hHF),O,O,O,(vJ),X,X,(hE),O,O,H,X,X,X,(hCE),O,O','6,X,(vGC),(vGH),X,X,X,(hGG),O,O,(vGB),X,X,(hGI),E,O,I,(vGG),X,X,(hIJ),O,C,O,(vA),X,X,(hD),G,O,O,X,X,X,(hD),O,O','6,X,X,X,X,(vIG),(vII),X,X,X,(hE,vIA),I,G,X,X,(hGJ,vGF),O,C,O,X,(hIE,vII),D,O,O,X,(hGJ),O,B,O,X,X,(hA),O,J,X,X,X','6,X,X,X,X,(vIA),(vE),X,X,(vJB),(hB,vII),I,J,X,(hIF),O,O,O,H,X,(hIB,vG),D,J,O,X,(hJG),C,O,O,F,X,(hB),O,O,X,X,X','7,X,X,X,(vDB),(vGG),X,X,X,X,(hGH),O,O,(vGA),(vGA),X,X,(hGF,vGA),O,O,O,O,X,(hGA,vGE),B,O,(hGD,vI),O,O,(hJ),O,I,(hGE,vGG),O,O,X,(hDA),O,D,O,O,X,X,X,X,(hF),O,O,X,X','6,X,X,X,(vFB),(vI),X,X,X,(hGF),O,O,(vGA),X,(vH),(hGA,vFD),O,O,O,(hFF),O,A,O,O,C,(hGG),O,J,O,X,X,X,(hGH),O,D,X,X','6,X,X,(vGA),(vA),X,X,X,(hB,vGE),O,O,(vHJ),X,(hBD),O,O,O,O,(vGH),(hGC),O,O,(hGJ,vGE),O,O,X,(hGG),O,F,O,O,X,X,(hGC),O,O,X','7,X,X,(vCE),(vG),(vI),X,X,X,(hEE),A,O,E,(vCD),(vCH),X,(hEG,vCD),O,O,O,O,O,(hA),G,C,X,(hEH),O,O,(hEE),O,O,(vI),(hA,vD),O,O,(hCF),O,O,O,O,O,X,X,X,(hED),O,O,B,X','7,X,(vG),(vDC),X,(vBA),(vDG),X,(hJ),O,G,(hDA,vBA),O,O,X,(hBC),O,O,G,O,O,X,X,(hDH),O,O,O,(vG),X,X,X,(hG,vDI),O,O,O,(vJ),X,(hBB),E,O,O,O,O,X,(hH),O,J,(hB),O,O','6,X,X,X,(vJG),(vCG),X,X,(vJG),(hJB,vJH),O,O,X,(hJH),I,B,O,O,(vD),(hJB),O,O,(hA,vJG),O,O,X,(hJB),O,B,O,O,X,(hF),I,C,X,X','7,X,(vA),(vE),X,X,(vD),(vB),(hF),O,O,(vJJ),(hI,vGD),O,O,(hGD),O,O,O,O,I,O,X,X,(hJI),O,O,X,X,X,(vJE),(hA,vF),I,O,(vD),(vJJ),(hGA),O,O,O,J,O,O,(hH),O,O,X,(hI),O,O','7,X,X,(vEH),(vEF),X,X,X,X,(hEI,vIH),O,O,(vEI),X,X,(hEI),O,O,O,O,(vIE),(vEJ),(hD),O,O,(hEH,vH),O,O,O,(hEC),O,O,O,(hD,vC),H,G,X,X,(hIA),O,O,O,O,X,X,X,(hD),E,O,X','7,X,X,X,X,X,(vEA),(vCJ),X,X,X,X,(hCD,vCC),O,O,X,X,(vCI),(hCJ,vEH),O,O,O,X,(hDH),O,J,B,O,X,X,(hCH,vD),O,O,O,O,X,(hCJ),O,O,O,X,X,X,(hJ),O,G,X,X,X,X','7,X,(vB),(vFF),X,(vEI),(vFE),X,(hH),O,O,(hFC,vIB),G,O,X,(hFC),O,O,O,O,O,X,X,X,(hFH),O,D,X,X,X,X,(hFF,vFG),O,O,(vFE),(vFH),X,(hEE),O,O,J,O,O,X,(hFG),O,O,(hFG),O,O','6,X,(vHE),(vII),X,X,X,(hHB),O,O,(vHF),(vHJ),X,(hHD),B,O,O,O,X,X,(hG),H,O,O,(vHE),X,(hCA),O,O,E,B,X,X,X,(hHB),O,G','6,X,(vH),(vAF),X,X,X,(hAC),O,O,(vAD),X,X,(hDI),J,O,O,(vAH),X,X,(hAC),O,O,O,(vAI),X,X,(hH),O,O,B,X,X,X,(hAH),O,E','6,X,(vC),(vHA),X,X,X,(hC),O,J,(vHA),X,X,(hF),J,O,O,(vHC),X,X,(hI),O,J,O,(vF),X,X,(hEJ),O,O,B,X,X,X,(hG),O,O','6,X,X,X,(vFJ),(vJC),X,X,(vFF),(hFF,vJE),O,O,X,(hFH),O,F,O,O,(vD),(hFI),O,C,(hE,vH),D,O,X,(hJC),O,O,O,A,X,(hFG),O,J,X,X','7,X,X,X,X,X,(vDE),(vBB),X,(vC),(vDF),X,(hBF),O,O,(hH),O,O,(vE),(hH,vBI),B,O,(hDF),O,O,O,O,D,(vE),X,(hDI,vBE),O,O,C,O,B,(hBF),O,A,X,(hG),E,D,(hG),O,O,X,X,X,X','7,X,(vJ),(vFH),X,X,X,X,(hHH),F,A,X,X,(vGE),(vA),(hI),O,O,(vC),(hF,vD),O,O,X,(hHC,vF),H,O,O,O,O,(hGJ),O,O,O,O,O,(vE),(hE),O,O,X,(hHI),O,O,X,X,X,X,(hA),O,O','7,X,X,(vCD),(vCB),(vF),X,X,X,(hCA,vCJ),O,O,O,(vFH),X,(hCD),O,O,O,O,O,(vCB),(hH),O,O,X,(hI),O,O,(hCE),O,B,(vCE),(hCH,vCI),O,G,X,(hFA),O,G,O,O,O,X,X,(hBC),H,O,O,X','6,X,X,X,X,(vHD),(vHH),X,X,X,(hA,vHH),H,I,X,X,(hHJ,vIG),O,C,O,X,(hHC,vE),O,O,O,X,(hIG),J,O,O,X,X,(hHF),O,O,X,X,X','6,X,X,(vFD),(vJB),X,X,X,(hH,vH),O,O,(vJD),X,(hFH),O,O,O,O,(vJI),(hJD),O,O,(hJD,vG),J,E,X,(hJD),O,O,O,O,X,X,(hB),A,O,X','6,X,X,X,(vC),(vDC),X,X,(vF),(hHB,vDI),O,O,(vDJ),(hDG),O,O,E,O,O,(hHA),O,O,(hHD,vG),O,O,(hEJ),O,O,F,O,O,X,(hJ),O,O,X,X','7,X,X,X,X,X,(vEJ),(vG),X,X,X,X,(hD,vI),C,O,X,X,(vEG),(hFE,vFE),O,O,O,X,(hFD),O,O,O,O,X,X,(hEC,vFI),O,O,O,O,X,(hEC),B,O,H,X,X,X,(hJ),O,O,X,X,X,X','7,X,(vI),(vAC),X,X,(vAI),(vCG),(hB),O,I,X,(hCB,vCD),O,O,(hH),A,D,(hCD,vAF),O,O,O,X,(hAC),O,O,O,O,X,X,(hCF,vCC),O,O,O,O,(vB),(hCB),O,O,O,(hCF),O,O,(hCB),O,J,X,(hB),O,O','6,X,X,X,(vJB),(vIG),X,X,(vA),(hJI,vJC),O,F,X,(hJB),O,O,O,O,(vJE),(hJD),B,O,(hJB,vD),O,H,X,(hJG),O,I,O,O,X,(hA),O,E,X,X','7,X,X,X,X,(vCD),(vCC),(vB),X,X,X,(hCC,vEC),O,I,O,X,X,(hCH),C,O,O,O,X,X,(hCA),F,O,X,X,X,(vA),(hCH,vCE),O,E,X,X,(hGA),C,O,O,O,X,X,(hCE),O,O,O,X,X,X','6,X,X,X,X,(vJI),(vA),X,X,(vJH),(hJE,vJI),O,G,X,(hJE),F,O,O,D,X,(hC,vB),O,E,O,X,(hJH),O,O,O,O,X,(hJD),O,E,X,X,X','6,X,X,X,X,(vAJ),(vAJ),X,X,X,(hAF,vGB),O,O,X,X,(hAE,vD),O,O,O,X,(hAJ,vF),O,J,O,X,(hAF),O,O,H,X,X,(hB),O,I,X,X,X','7,X,X,X,X,(vH),(vIE),X,X,X,X,(hA,vA),O,O,X,X,(vID),(hF,vCH),O,O,A,(vIE),(hIH),O,O,O,(hIA,vIH),O,O,(hIE),O,O,(hIG,vIA),B,O,O,X,(hIF),O,G,A,X,X,X,(hIE),O,D,X,X,X','7,X,(vEF),(vB),(vFC),X,X,X,(hH),O,O,O,(vEA),X,X,(hED),C,O,O,O,X,X,X,X,(hEG),O,F,X,X,X,X,(hEI),O,O,(vEH),(vI),X,X,(hFH),O,O,O,O,X,X,X,(hEE),O,I,O','6,X,(vHI),(vDG),X,X,X,(hHE),J,O,(vDG),X,X,(hHC),H,O,O,(vHA),X,X,(hDH),F,O,G,(vHE),X,X,(hHC),O,O,O,X,X,X,(hHE),O,O','6,X,X,(vAD),(vAE),X,X,X,(hAA),O,O,(vAD),(vAA),X,(hAI,vI),O,F,D,J,(hC),A,O,(hB,vJ),A,E,(hAB),O,I,C,J,X,X,X,(hI),O,H,X','6,X,X,(vDA),(vE),X,X,X,(hJ,vDE),O,F,(vGG),X,(hDJ),O,O,O,O,(vC),(hDD),O,O,(hJ,vI),O,O,X,(hGG),O,D,O,O,X,X,(hDA),G,B,X','7,X,X,(vJD),(vG),(vI),X,X,X,(hG),O,O,H,(vEB),(vEF),X,(hEB),O,O,B,O,J,X,(hEJ,vA),O,H,(hEE,vEA),O,O,(hA),O,O,(hEJ,vG),O,O,X,(hJF),O,O,O,O,O,X,X,X,(hG),F,O,O,X','6,X,X,X,X,(vEJ),(vG),X,X,X,(hDE,vF),O,O,X,X,(hDJ,vF),O,O,O,X,(hA,vDA),O,O,O,X,(hDI),B,O,O,X,X,(hDE),C,O,X,X,X','6,X,X,(vAC),(vD),X,X,X,(hD,vEI),O,O,(vBC),X,(hBA),O,O,O,O,(vH),(hEF),O,O,(hEI,vF),O,O,X,(hEF),O,O,A,O,X,X,(hEE),G,D,X','6,X,X,(vGB),(vD),X,X,X,(hGG),A,C,(vGJ),(vC),X,(hGG,vGC),O,O,O,J,(hGH),O,O,(hE,vI),G,H,(hHF),O,H,O,O,X,X,X,(hE),O,O,X','6,X,X,(vIJ),(vCD),X,X,X,(hCD),O,O,(vCI),(vCG),X,(hIH,vCC),G,O,O,O,(hCE),O,I,(hCH,vCD),G,O,(hIC),B,D,O,O,X,X,X,(hA),O,O,X','7,X,(vII),(vDH),(vID),X,X,X,(hIG),O,O,O,X,X,X,(hDA),O,C,J,(vII),X,X,X,(hID),F,O,O,(vDH),X,X,X,(hID),O,O,O,(vID),X,X,X,(hIE),A,O,O,X,X,X,(hDD),O,O,O','7,X,(vEB),(vF),X,X,X,X,(hED),O,O,(vAJ),(vED),(vD),X,(hIB),O,O,O,G,O,X,X,X,(hF,vA),O,O,O,X,X,(hED),O,O,F,(vA),(vEB),X,(hIE),O,H,O,O,O,X,X,X,X,(hEE),O,O','7,X,X,X,X,(vCA),(vCE),(vB),X,X,X,(hF),O,O,O,X,X,X,(hJG,vCD),I,O,O,X,X,(hF,vB),O,O,O,X,X,(hJI,vCI),O,F,O,X,X,(hD),O,O,O,X,X,X,(hCI),O,O,O,X,X,X','6,X,(vJI),(vI),X,X,X,(hH),O,O,(vD),X,X,(hJA),F,O,O,(vJH),X,X,(hJI),C,G,O,(vJJ),X,X,(hD),O,O,O,X,X,X,(hJE),O,O','6,X,X,X,(vDC),(vAE),X,X,X,(hI),O,B,(vI),X,(vC),(hJ,vDE),O,O,O,(hAF),A,D,O,O,O,(hI),O,O,G,X,X,X,(hDA),H,O,X,X','7,X,X,X,(vFD),(vAF),X,X,X,(vFD),(hFE,vFA),B,O,X,X,(hHI),O,O,O,O,(vFF),X,(hFI),O,O,(hC,vG),O,H,(vFA),X,(hE),O,O,(hFB,vC),O,O,X,X,(hFJ),O,G,O,O,X,X,(hH),O,O,X,X','7,X,X,X,X,(vD),(vHD),X,X,X,(vDH),(hA,vJJ),O,O,(vE),X,(hHB,vJH),O,O,O,E,J,(hJE),H,O,O,(hD,vF),O,O,(hJG),E,O,(hJE,vJG),C,O,O,(hHH),J,O,O,O,O,X,X,(hJJ),O,O,X,X,X','7,X,X,X,X,(vBA),(vEB),X,X,X,(vBG),(hC,vBB),O,O,X,X,(hBD,vBA),O,O,O,O,(vBJ),(hBC),O,O,O,(hBG,vBD),A,O,(hBB),O,O,(hEE,vBF),O,O,D,X,(hBJ),O,O,O,I,X,X,(hBD),O,O,X,X,X','7,X,X,X,X,X,(vDG),(vC),X,(vB),(vFH),X,(hC),E,O,(hA),O,O,(vDD),(hH,vDB),O,O,(hDA),C,O,O,O,O,(vE),X,(hFH,vDE),O,O,H,O,F,(hDH),O,O,X,(hDI),O,O,(hJ),O,O,X,X,X,X','6,X,(vB),(vE),X,X,X,(hA),D,O,(vA),X,X,(hH),O,C,O,(vIG),X,X,(hDI),O,O,O,(vDF),X,X,(hIF),O,O,O,X,X,X,(hH),O,O','7,X,(vHF),(vC),X,X,(vC),(vHF),(hC),O,O,(vBC),(hA,vBF),O,O,(hBE),O,O,O,O,O,O,X,X,(hHD),A,O,X,X,X,(vD),(hJ,vHA),O,O,(vHI),(vC),(hCH),J,O,O,O,O,B,(hHH),O,O,X,(hE),O,O','6,X,X,X,(vJ),(vDA),X,X,(vFD),(hB,vFE),O,O,(vDA),(hDJ),O,O,O,O,O,(hDE),O,O,(hDA,vC),O,H,(hBA),O,I,O,G,O,X,(hJ),E,O,X,X','6,X,(vGA),(vA),X,X,X,(hGE),O,O,(vGD),X,X,(hGA),O,G,A,(vED),X,X,(hGE),O,O,O,(vGD),X,X,(hEB),C,H,F,X,X,X,(hGE),A,I','6,X,(vIC),(vFD),X,X,X,(hIG),O,C,(vIB),X,X,(hFJ),O,O,O,(vII),X,X,(hIE),O,O,F,(vIA),X,X,(hIJ),F,I,O,X,X,X,(hIC),O,O','6,X,X,X,(vJG),(vHH),X,X,X,(hHA),O,O,(vHD),X,(vE),(hJF,vHJ),O,O,O,(hHB),F,O,D,O,O,(hE),O,J,O,X,X,X,(hHE),I,O,X,X','7,X,X,X,(vGG),(vI),(vEC),X,X,(vBH),(hJ,vBI),O,O,O,X,(hBJ),O,O,O,O,O,(vJ),(hGJ),O,O,X,(hA),O,O,(hGC),O,O,(vC),(hGB,vGJ),O,O,X,(hBF),O,O,O,O,B,X,(hBH),O,O,O,X,X','7,X,X,X,X,X,(vD),(vHB),X,X,(vG),(vFC),(hHA,vAI),O,O,X,(hAB),O,O,O,O,O,X,(hAD),O,O,O,(vHB),X,X,(vF),(hAF,vHI),O,O,O,X,(hAB),O,O,O,O,O,X,(hB),O,E,X,X,X,X','6,X,(vBC),(vDF),X,X,X,(hBE),O,O,(vDB),X,X,(hDG),O,J,O,(vC),X,X,(hBI),O,O,O,(vBB),X,X,(hBA),O,O,D,X,X,X,(hBG),F,O','6,X,X,X,(vH),(vDC),(vGA),X,X,(hA,vIE),O,O,O,X,(hIG,vGG),O,O,O,O,(hF),O,O,(hGF,vJ),J,O,(hGA),O,O,O,O,X,(hIE),O,O,O,X,X','6,X,(vHC),(vHJ),X,X,X,(hHC),A,B,(vA),X,X,(hHI),O,O,O,(vHA),X,X,(hD),F,O,O,(vB),X,X,(hII),G,O,O,X,X,X,(hB),O,O','7,X,(vH),(vJA),X,X,(vIE),(vJI),(hJC),O,O,(vDG),(hJE,vIG),O,O,(hDD),I,O,O,O,O,O,X,X,(hII,vIG),O,O,O,X,X,(hIE,vJA),O,O,O,(vB),(vJI),(hDG),C,O,O,O,O,O,(hJF),O,O,X,(hH),O,O','7,X,(vHH),(vBE),X,X,X,X,(hE),B,O,X,(vHF),(vBJ),X,(hHI),C,O,(hJ,vHI),O,O,X,X,(hBC),D,O,O,O,X,X,(hHH),O,O,D,O,(vHF),X,(hHD),F,O,(hHD),G,O,X,X,X,X,(hHE),O,O','7,X,X,X,X,X,(vIF),(vI),X,X,X,X,(hB,vGF),O,O,X,X,(vEG),(hGG,vB),O,O,O,X,(hGJ),O,O,O,H,X,X,(hGA,vA),O,O,O,O,X,(hGC),I,H,O,X,X,X,(hH),G,J,X,X,X,X','7,X,X,X,X,X,(vJF),(vJF),X,X,X,X,(hJD),A,O,X,X,(vBG),(vJB),(hI,vI),O,O,X,(hBD,vJF),F,O,O,E,O,(hIB),O,O,O,O,C,X,(hJG),O,B,X,X,X,X,(hI),O,J,X,X,X,X','6,X,X,(vEI),(vC),X,X,X,(hH,vGG),O,O,(vGD),X,(hBJ),O,O,O,O,(vD),(hGI),O,O,(hD,vD),E,G,X,(hBG),O,O,A,O,X,X,(hJ),O,O,X','7,X,X,X,X,(vFI),(vJF),X,X,X,X,(hJH),O,O,(vJC),X,X,X,(hEE,vEC),O,O,O,X,(vJE),(hED,vEF),O,O,O,G,(hJB),O,O,O,O,X,X,(hEH),O,O,G,X,X,X,X,(hJG),O,O,X,X,X','7,X,X,X,(vJ),(vEI),X,X,X,X,(hJ,vEC),O,A,(vBD),X,X,(hHC,vEA),O,O,O,I,(vF),(hEE),O,O,(hEE,vHD),B,J,O,(hHE),O,O,O,(hG,vED),O,O,X,(hHD),O,O,O,O,X,X,X,(hEA),O,O,X,X','7,X,X,X,X,X,(vFH),(vED),X,X,X,X,(hEC,vEA),O,O,X,X,(vED),(hFI,vEH),O,O,O,X,(hEE),O,O,A,D,X,X,(hFB,vJ),O,O,O,J,X,(hFI),O,O,O,X,X,X,(hI),O,A,X,X,X,X','6,X,(vB),(vHI),X,X,X,(hHH),O,O,(vHJ),(vGA),X,(hHH),O,O,O,I,X,X,(hGE),O,A,O,(vHE),X,(hHJ),H,B,F,D,X,X,X,(hHJ),O,C'
+]
+
+kakuro(testPuzzles);
```
# --solutions--
diff --git a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-425-prime-connection.md b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-425-prime-connection.md
index d46740b0d5..72f5393017 100644
--- a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-425-prime-connection.md
+++ b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-425-prime-connection.md
@@ -8,26 +8,29 @@ dashedName: problem-425-prime-connection
# --description--
-Two positive numbers A and B are said to be connected (denoted by "A ↔ B") if one of these conditions holds:
+Two positive numbers $A$ and $B$ are said to be connected (denoted by "$A ↔ B$") if one of these conditions holds:
-(1) A and B have the same length and differ in exactly one digit; for example, 123 ↔ 173.
+1. $A$ and $B$ have the same length and differ in exactly one digit; for example, $123 ↔ 173$.
+2. Adding one digit to the left of $A$ (or $B$) makes $B$ (or $A$); for example, $23 ↔ 223$ and $123 ↔ 23$.
-(2) Adding one digit to the left of A (or B) makes B (or A); for example, 23 ↔ 223 and 123 ↔ 23.
+We call a prime $P$ a 2's relative if there exists a chain of connected primes between 2 and $P$ and no prime in the chain exceeds $P$.
-We call a prime P a 2's relative if there exists a chain of connected primes between 2 and P and no prime in the chain exceeds P.
+For example, 127 is a 2's relative. One of the possible chains is shown below:
-For example, 127 is a 2's relative. One of the possible chains is shown below: 2 ↔ 3 ↔ 13 ↔ 113 ↔ 103 ↔ 107 ↔ 127 However, 11 and 103 are not 2's relatives.
+$$2 ↔ 3 ↔ 13 ↔ 113 ↔ 103 ↔ 107 ↔ 127$$
-Let F(N) be the sum of the primes ≤ N which are not 2's relatives. We can verify that F(103) = 431 and F(104) = 78728.
+However, 11 and 103 are not 2's relatives.
-Find F(107).
+Let $F(N)$ be the sum of the primes $≤ N$ which are not 2's relatives. We can verify that $F({10}^3) = 431$ and $F({10}^4) = 78\\,728$.
+
+Find $F({10}^7)$.
# --hints--
-`euler425()` should return 46479497324.
+`primeConnection()` should return `46479497324`.
```js
-assert.strictEqual(euler425(), 46479497324);
+assert.strictEqual(primeConnection(), 46479497324);
```
# --seed--
@@ -35,12 +38,12 @@ assert.strictEqual(euler425(), 46479497324);
## --seed-contents--
```js
-function euler425() {
+function primeConnection() {
return true;
}
-euler425();
+primeConnection();
```
# --solutions--
diff --git a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-426-box-ball-system.md b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-426-box-ball-system.md
index 5e2c48c34e..3f1e34d156 100644
--- a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-426-box-ball-system.md
+++ b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-426-box-ball-system.md
@@ -14,20 +14,34 @@ A turn consists of moving each ball exactly once according to the following rule
After one turn the sequence (2, 2, 2, 1, 2) becomes (2, 2, 1, 2, 3) as can be seen below; note that we begin the new sequence starting at the first occupied box.
+
+
A system like this is called a Box-Ball System or BBS for short.
-It can be shown that after a sufficient number of turns, the system evolves to a state where the consecutive numbers of occupied boxes is invariant. In the example below, the consecutive numbers of occupied boxes evolves to \[1, 2, 3]; we shall call this the final state.
+It can be shown that after a sufficient number of turns, the system evolves to a state where the consecutive numbers of occupied boxes is invariant. In the example below, the consecutive numbers of occupied boxes evolves to [1, 2, 3]; we shall call this the final state.
-We define the sequence {ti}:s0 = 290797 sk+1 = sk2 mod 50515093 tk = (sk mod 64) + 1
+
-Starting from the initial configuration (t0, t1, …, t10), the final state becomes \[1, 3, 10, 24, 51, 75]. Starting from the initial configuration (t0, t1, …, t10 000 000), find the final state. Give as your answer the sum of the squares of the elements of the final state. For example, if the final state is \[1, 2, 3] then 14 ( = 12 + 22 + 32) is your answer.
+We define the sequence $\\{t_i\\}$:
+
+$$\begin{align}
+ & s_0 = 290\\,797 \\\\
+ & s_{k + 1} = {s_k}^2\bmod 50\\,515\\,093 \\\\
+ & t_k = (s_k\bmod 64) + 1
+\end{align}$$
+
+Starting from the initial configuration $(t_0, t_1, \ldots, t_{10})$, the final state becomes [1, 3, 10, 24, 51, 75].
+
+Starting from the initial configuration $(t_0, t_1, \ldots, t_{10\\,000\\,000})$, find the final state.
+
+Give as your answer the sum of the squares of the elements of the final state. For example, if the final state is [1, 2, 3] then $14 (= 1^2 + 2^2 + 3^2)$ is your answer.
# --hints--
-`euler426()` should return 31591886008.
+`boxBallSystem()` should return `31591886008`.
```js
-assert.strictEqual(euler426(), 31591886008);
+assert.strictEqual(boxBallSystem(), 31591886008);
```
# --seed--
@@ -35,12 +49,12 @@ assert.strictEqual(euler426(), 31591886008);
## --seed-contents--
```js
-function euler426() {
+function boxBallSystem() {
return true;
}
-euler426();
+boxBallSystem();
```
# --solutions--
diff --git a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-427-n-sequences.md b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-427-n-sequences.md
index 8f399eeaf0..bc840f45c8 100644
--- a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-427-n-sequences.md
+++ b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-427-n-sequences.md
@@ -8,24 +8,24 @@ dashedName: problem-427-n-sequences
# --description--
-A sequence of integers S = {si} is called an n-sequence if it has n elements and each element si satisfies 1 ≤ si ≤ n. Thus there are nn distinct n-sequences in total.
+A sequence of integers $S = \\{s_i\\}$ is called an $n$-sequence if it has $n$ elements and each element $s_i$ satisfies $1 ≤ s_i ≤ n$. Thus there are $n^n$ distinct $n$-sequences in total.
-For example, the sequence S = {1, 5, 5, 10, 7, 7, 7, 2, 3, 7} is a 10-sequence.
+For example, the sequence $S = \\{1, 5, 5, 10, 7, 7, 7, 2, 3, 7\\}$ is a 10-sequence.
-For any sequence S, let L(S) be the length of the longest contiguous subsequence of S with the same value. For example, for the given sequence S above, L(S) = 3, because of the three consecutive 7's.
+For any sequence $S$, let $L(S)$ be the length of the longest contiguous subsequence of $S$ with the same value. For example, for the given sequence $S$ above, $L(S) = 3$, because of the three consecutive 7's.
-Let f(n) = ∑ L(S) for all n-sequences S.
+Let $f(n) = \sum L(S)$ for all $n$-sequences $S$.
-For example, f(3) = 45, f(7) = 1403689 and f(11) = 481496895121.
+For example, $f(3) = 45$, $f(7) = 1\\,403\\,689$ and $f(11) = 481\\,496\\,895\\,121$.
-Find f(7 500 000) mod 1 000 000 009.
+Find $f(7\\,500\\,000)\bmod 1\\,000\\,000\\,009$.
# --hints--
-`euler427()` should return 97138867.
+`nSequences()` should return `97138867`.
```js
-assert.strictEqual(euler427(), 97138867);
+assert.strictEqual(nSequences(), 97138867);
```
# --seed--
@@ -33,12 +33,12 @@ assert.strictEqual(euler427(), 97138867);
## --seed-contents--
```js
-function euler427() {
+function nSequences() {
return true;
}
-euler427();
+nSequences();
```
# --solutions--
diff --git a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-428-necklace-of-circles.md b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-428-necklace-of-circles.md
index e3b2460e6d..30d46ed11e 100644
--- a/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-428-necklace-of-circles.md
+++ b/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-428-necklace-of-circles.md
@@ -8,27 +8,32 @@ dashedName: problem-428-necklace-of-circles
# --description--
-Let `a`, `b` and `c` be positive numbers.
+Let $a$, $b$ and $c$ be positive numbers.
-Let W, X, Y, Z be four collinear points where |WX| = `a`, |XY| = `b`, |YZ| = `c` and |WZ| = `a` + `b` + `c`.
+Let $W$, $X$, $Y$, $Z$ be four collinear points where $|WX| = a$, $|XY| = b$, $|YZ| = c$ and $|WZ| = a + b + c$.
-Let Cin be the circle having the diameter XY.
+Let $C_{\text{in}}$ be the circle having the diameter $XY$.
-Let Cout be the circle having the diameter WZ.
+Let $C_{\text{out}}$ be the circle having the diameter $WZ$.
-The triplet (`a`, `b`, `c`) is called a *necklace triplet* if you can place `k` ≥ 3 distinct circles C1, C2, ..., Ck such that:
+The triplet ($a$, $b$, $c$) is called a *necklace triplet* if you can place $k ≥ 3$ distinct circles $C_1, C_2, \ldots, C_k$ such that:
+
+- $C_i$ has no common interior points with any $C_j$ for $1 ≤ i$, $j ≤ k$ and $i ≠ j$,
+- $C_i$ is tangent to both $C_{\text{in}}$ and $C_{\text{out}}$ for $1 ≤ i ≤ k$,
+- $C_i$ is tangent to $C_{i + 1}$ for $1 ≤ i < k$, and
+- $C_k$ is tangent to $C_1$.
-