diff --git a/guide/english/r/data-types/index.md b/guide/english/r/data-types/index.md index 9e71c96e91..12c4b9caca 100644 --- a/guide/english/r/data-types/index.md +++ b/guide/english/r/data-types/index.md @@ -1,103 +1,103 @@ ---- -title: Data Types in R ---- -## Scalars - Scalar refers to an atomic quantity that can hold only one value at a time. Scalars are the most basic data types. Some common types of scalars : - -1. Number -```r - > x <- 5 - > y <- 5.5 - > class(x) - [1] "numeric" - > class(y) - [1] "numeric" - > class(x+y) - [1] "numeric" -``` - -2. Logical value -```r - > m <- x > y # Used to check, Is x larger than y? - > n <- x < y # Used to check, Is x smaller than y? - > m - [1] FALSE - > n - [1] TRUE - > class(m) - [1] "logical" - > class(NA) # NA is another logical value: 'Not Available'/Missing Values - [1] "logical" -``` - - 3. Character(string) -```r - > a <- "1"; b <- "2.5" - > a;b - [1] "1" - [1] "2.5" - > a+b - Error in a + b : non-numeric argument to binary operator - > class(a) - [1] "character" - > class(as.numeric(a)) - [1] "numeric" - > class(as.character(x)) - [1] "character" -``` - -## Vector - It is a sequence of data elements of the same basic type. For example: - - > o <- c(1,2,5.3,6,-2,4) # Numeric vector - > p <- c("one","two","three","four","five","six") # Character vector - > q <- c(TRUE,TRUE,FALSE,TRUE,FALSE,TRUE) # Logical vector - > o;p;q - [1] 1.0 2.0 5.3 6.0 -2.0 4.0 - [1] "one" "two" "three" "four" "five" "six" - [1] TRUE TRUE FALSE TRUE FALSE - - -## Matrix - It is a two-dimensional rectangular data set. The components in a matrix also must be of the same basic type like vector. For example: - - > m = matrix( c('a','a','b','c','b','a'), nrow = 2, ncol = 3, byrow = TRUE) - > m - >[,1] [,2] [,3] - [1,] "a" "a" "b" - [2,] "c" "b" "a" - - -## Data Frame - It is more general than a matrix, in that different columns can have different basic data types. For example: - - > d <- c(1,2,3,4) - > e <- c("red", "white", "red", NA) - > f <- c(TRUE,TRUE,TRUE,FALSE) - > mydata <- data.frame(d,e,f) - > names(mydata) <- c("ID","Color","Passed") - > mydata - - ID Color Passed - 1 1 red TRUE - 2 2 white TRUE - 3 3 red TRUE - 4 4 FALSE - - -## Lists - It is an R-object which can contain many different types of elements inside it like vectors, functions and even another list inside it. For example: - - > list1 <- list(c(2,5,3),21.3,sin) - > list1 - [[1]] - [1] 2 5 3 - [[2]] - [1] 21.3 - [[3]] - function (x) .Primitive("sin") - - -## Reference: - * [Official Docs](https://cran.r-project.org/manuals.html) - * [Data Types in R by r-bloggers](https://www.r-bloggers.com/classes-and-objects-in-r/) +--- +title: Data Types in R +--- +## Scalars + Scalar refers to an atomic quantity that can hold only one value at a time. Scalars are the most basic data types. Some common types of scalars : + +1. Number +```r + > x <- 5 + > y <- 5.5 + > class(x) + [1] "numeric" + > class(y) + [1] "numeric" + > class(x+y) + [1] "numeric" +``` + +2. Logical value +```r + > m <- x > y # Used to check, Is x larger than y? + > n <- x < y # Used to check, Is x smaller than y? + > m + [1] FALSE + > n + [1] TRUE + > class(m) + [1] "logical" + > class(NA) # NA is another logical value: 'Not Available'/Missing Values + [1] "logical" +``` + + 3. Character(string) +```r + > a <- "1"; b <- "2.5" + > a;b + [1] "1" + [1] "2.5" + > a+b + Error in a + b : non-numeric argument to binary operator + > class(a) + [1] "character" + > class(as.numeric(a)) + [1] "numeric" + > class(as.character(x)) + [1] "character" +``` + +## Vector + Vectors are sequences of data elements of the same basic type. For example: + + > o <- c(1,2,5.3,6,-2,4) # Numeric vector + > p <- c("one","two","three","four","five","six") # Character vector + > q <- c(TRUE,TRUE,FALSE,TRUE,FALSE,TRUE) # Logical vector + > o;p;q + [1] 1.0 2.0 5.3 6.0 -2.0 4.0 + [1] "one" "two" "three" "four" "five" "six" + [1] TRUE TRUE FALSE TRUE FALSE + + +## Matrix + A matrix is a two-dimensional rectangular data set. The components in a matrix must be of the same basic type. For example: + + > m = matrix( c('a','a','b','c','b','a'), nrow = 2, ncol = 3, byrow = TRUE) + > m + >[,1] [,2] [,3] + [1,] "a" "a" "b" + [2,] "c" "b" "a" + + +## Data Frame + A data frame is more general than a matrix, in that different columns can have different basic data types. For example: + + > d <- c(1,2,3,4) + > e <- c("red", "white", "red", NA) + > f <- c(TRUE,TRUE,TRUE,FALSE) + > mydata <- data.frame(d,e,f) + > names(mydata) <- c("ID","Color","Passed") + > mydata + + ID Color Passed + 1 1 red TRUE + 2 2 white TRUE + 3 3 red TRUE + 4 4 FALSE + + +## Lists + Lists are R-objects which can contain many different types of elements inside them like vectors, functions and even another list. For example: + + > list1 <- list(c(2,5,3),21.3,sin) + > list1 + [[1]] + [1] 2 5 3 + [[2]] + [1] 21.3 + [[3]] + function (x) .Primitive("sin") + + +## Reference: + * [Official Docs](https://cran.r-project.org/manuals.html) + * [Data Types in R by r-bloggers](https://www.r-bloggers.com/classes-and-objects-in-r/)