diff --git a/challenges/08-coding-interview-questions-and-take-home-assignments/project-euler-problems.json b/challenges/08-coding-interview-questions-and-take-home-assignments/project-euler-problems.json
index 7011101a00..7269204b1f 100644
--- a/challenges/08-coding-interview-questions-and-take-home-assignments/project-euler-problems.json
+++ b/challenges/08-coding-interview-questions-and-take-home-assignments/project-euler-problems.json
@@ -1713,17 +1713,17 @@
"type": "bonfire",
"title": "Problem 49: Prime permutations",
"tests": [
- "assert.strictEqual(euler49(), 296962999629, 'message: euler49()
should return 296962999629.');"
+ "assert.strictEqual(primePermutations(), 296962999629, 'message: primePermutations()
should return 296962999629.');"
],
- "solutions": [],
+ "solutions": ["function primePermutations() {\n function arePermutations(num1, num2) {\n const numStr1 = num1.toString();\n let numStr2 = num2.toString();\n if (numStr1.length !== numStr2.length) {\n return false;\n }\n\n for (let i = 0; i < numStr1.length; i++) {\n const index = numStr2.indexOf(numStr1[i]);\n if (index === -1) {\n return false;\n }\n numStr2 = numStr2.slice(0, index) + numStr2.slice(index + 1);\n }\n return true;\n }\n\n function isPrime(num) {\n if (num < 2) {\n return false;\n } else if (num === 2) {\n return true;\n }\n const sqrtOfNum = Math.floor(num ** 0.5);\n for (let i = 2; i <= sqrtOfNum + 1; i++) {\n if (num % i === 0) {\n return false;\n }\n }\n return true;\n }\n\n for (let num1 = 1000; num1 <= 9999; num1++) {\n const num2 = num1 + 3330;\n const num3 = num2 + 3330;\n if (isPrime(num1) && isPrime(num2) && isPrime(num3)) {\n if (arePermutations(num1, num2) && arePermutations(num1, num3)\n && num1 !== 1487) {\n // concatenate and return numbers\n return (num1 * 100000000) + (num2 * 10000) + num3;\n }\n }\n }\n return 0;\n}"],
"translations": {},
"challengeSeed": [
- "function euler49() {",
+ "function primePermutations() {",
" // Good luck!",
" return true;",
"}",
"",
- "euler49();"
+ "primePermutations();"
],
"description": [
"The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual in two ways: (i) each of the three terms are prime, and, (ii) each of the 4-digit numbers are permutations of one another.",