fix(curriculum): clean-up Project Euler 341-360 (#42998)

* fix: clean-up Project Euler 341-360

* fix: improve wording

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>
Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
This commit is contained in:
gikf
2021-07-29 19:14:22 +02:00
committed by GitHub
parent 7e41f19633
commit c18554dd44
20 changed files with 271 additions and 168 deletions

View File

@ -8,20 +8,24 @@ dashedName: problem-360-scary-sphere
# --description--
Given two points (x1,y1,z1) and (x2,y2,z2) in three dimensional space, the Manhattan distance between those points is defined as |x1-x2|+|y1-y2|+|z1-z2|.
Given two points ($x_1$, $y_1$, $z_1$) and ($x_2$, $y_2$, $z_2$) in three dimensional space, the Manhattan distance between those points is defined as $|x_1 - x_2| + |y_1 - y_2| + |z_1 - z_2|$.
Let C(r) be a sphere with radius r and center in the origin O(0,0,0). Let I(r) be the set of all points with integer coordinates on the surface of C(r). Let S(r) be the sum of the Manhattan distances of all elements of I(r) to the origin O.
Let $C(r)$ be a sphere with radius $r$ and center in the origin $O(0, 0, 0)$.
E.g. S(45)=34518.
Let $I(r)$ be the set of all points with integer coordinates on the surface of $C(r)$.
Find S(1010).
Let $S(r)$ be the sum of the Manhattan distances of all elements of $I(r)$ to the origin $O$.
E.g. $S(45)=34518$.
Find $S({10}^{10})$.
# --hints--
`euler360()` should return 878825614395267100.
`scarySphere()` should return `878825614395267100`.
```js
assert.strictEqual(euler360(), 878825614395267100);
assert.strictEqual(scarySphere(), 878825614395267100);
```
# --seed--
@ -29,12 +33,12 @@ assert.strictEqual(euler360(), 878825614395267100);
## --seed-contents--
```js
function euler360() {
function scarySphere() {
return true;
}
euler360();
scarySphere();
```
# --solutions--