fix(curriculum): Problem 35 - update solution

This commit is contained in:
Aditya
2018-11-10 12:49:16 +05:30
committed by Valeriy
parent 4b2a09efb1
commit c353c4c659

View File

@ -9,6 +9,9 @@ title: 'Problem 35: Circular primes'
The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime.
There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97.
How many circular primes are there below n, whereas 100 <= n <= 1000000?
<br><strong>Note:</strong><br>
Circular primes individual rotation can exceeed `n`.
</section>
## Instructions
@ -63,37 +66,57 @@ circularPrimes(1000000);
```js
const circularPrimes = (n) => {
const primeCheck = (num) => {
if (num === 1) {
return false;
}
for (let i = 2; i <= Math.floor(Math.sqrt(num)); i++) {
if (num % i === 0) {
return false;
}
}
return true;
};
let count = 1;
for (let i = 1; i < n; i += 2) {
if (primeCheck(i)) {
let flag = true;
let circularNum = i.toString();
for (let j = 1; j < i.toString().length; j++) {
circularNum = circularNum.substring(1) + circularNum.substring(0, 1);
if (primeCheck(Number(circularNum)) === false) {
flag = false;
break;
}
}
if (flag) {
count++;
function rotate(n) {
if (n.length == 1) return n;
return n.slice(1) + n[0];
}
function circularPrimes(n) {
// Nearest n < 10^k
const bound = 10 ** Math.ceil(Math.log10(n));
const primes = [0, 0, 2];
let count = 0;
// Making primes array
for (let i = 4; i <= bound; i += 2) {
primes.push(i - 1);
primes.push(0);
}
// Getting upperbound
const upperBound = Math.ceil(Math.sqrt(bound));
// Setting other non-prime numbers to 0
for (let i = 3; i < upperBound; i += 2) {
if (primes[i]) {
for (let j = i * i; j < bound; j += i) {
primes[j] = 0;
}
}
}
// Iterating through the array
for (let i = 2; i < n; i++) {
if (primes[i]) {
let curr = String(primes[i]);
let tmp = 1; // tmp variable to hold the no of rotations
for (let x = rotate(curr); x != curr; x = rotate(x)) {
if (x > n && primes[x]) {
continue;
}
else if (!primes[x]) {
// If the rotated value is 0 then its not a ciruclar prime, break the loop
tmp = 0;
break;
}
tmp++;
primes[x] = 0;
}
count += tmp;
}
}
return count;
};
}
```
</section>