chore: manual translations (#42811)

This commit is contained in:
Nicholas Carrigan (he/him)
2021-07-09 21:23:54 -07:00
committed by GitHub
parent a3395269a0
commit c4fd49e5b7
806 changed files with 8935 additions and 4378 deletions

View File

@ -8,7 +8,7 @@ dashedName: y-combinator
# --description--
In strict [functional programming](<https://en.wikipedia.org/wiki/Functional programming> "wp: functional programming") and the [lambda calculus](<https://en.wikipedia.org/wiki/lambda calculus> "wp: lambda calculus"), functions (lambda expressions) don't have state and are only allowed to refer to arguments of enclosing functions. This rules out the usual definition of a recursive function wherein a function is associated with the state of a variable and this variable's state is used in the body of the function. The [Y combinator](https://mvanier.livejournal.com/2897.html) is itself a stateless function that, when applied to another stateless function, returns a recursive version of the function. The Y combinator is the simplest of the class of such functions, called [fixed-point combinators](<https://en.wikipedia.org/wiki/Fixed-point combinator> "wp: fixed-point combinator").
In strict [functional programming](https://en.wikipedia.org/wiki/Functional programming "wp: functional programming") and the [lambda calculus](https://en.wikipedia.org/wiki/lambda calculus "wp: lambda calculus"), functions (lambda expressions) don't have state and are only allowed to refer to arguments of enclosing functions. This rules out the usual definition of a recursive function wherein a function is associated with the state of a variable and this variable's state is used in the body of the function. The [Y combinator](https://mvanier.livejournal.com/2897.html) is itself a stateless function that, when applied to another stateless function, returns a recursive version of the function. The Y combinator is the simplest of the class of such functions, called [fixed-point combinators](https://en.wikipedia.org/wiki/Fixed-point combinator "wp: fixed-point combinator").
# --instructions--