fix(learn): Rework Euler Problem 182 (#41337)

* Rework Euler Problem 182

* Reordered tests

* Fixes for formatting
This commit is contained in:
Caden Parker
2021-03-10 06:55:52 -08:00
committed by GitHub
parent 256e7f416d
commit d8e6d8dc46

View File

@ -10,16 +10,59 @@ dashedName: problem-182-rsa-encryption
The RSA encryption is based on the following procedure:
Generate two distinct primes p and q.Compute n=pq and φ=(p-1)(q-1).
Generate two distinct primes `p` and `q`.
Compute `n=p*q` and `φ=(p-1)(q-1)`.
Find an integer `e`, `1 < e < φ`, such that `gcd(e,φ) = 1`
Find an integer e, 1&lt;e&lt;φ, such='' that='' gcd(e,φ)='1.' a='' message='' in='' this='' system='' is='' number='' the='' interval='' \[0,n-1].='' text='' to='' be='' encrypted='' then='' somehow='' converted='' messages='' (numbers='' \[0,n-1]).='' encrypt='' text,='' for='' each='' message,='' m,='' c='me' mod='' n='' calculated.='' decrypt='' following='' procedure='' needed:='' calculate='' d='' ed='1' φ,='' c,='' m='cd' n.='' there='' exist='' values='' of='' e='' and='' me='' call='' which='' unconcealed='' messages.='' an='' issue='' when='' choosing='' should='' not='' too='' many='' instance,='' let='' p='19' q='37.' φ='18\*36=648.' if='' we='' choose='' then,='' although='' gcd(181,648)='1' it='' turns='' out='' all='' possible='' messagesm='' (0≤m≤n-1)='' are='' calculating='' any='' valid='' choice='' some='' it's='' important='' at='' minimum.='' find='' sum='' e,='' 1&lt;e&lt;φ(1009,3643)='' so='' value='' &lt;='' section=''>&lt;/e&lt;φ,>
A message in this system is a number in the interval `[0,n-1]`.
A text to be encrypted is then somehow converted to messages (numbers in the interval `[0,n-1]`).
To encrypt the text, for each message, `m`, c=m<sup>e</sup> mod n is calculated.
To decrypt the text, the following procedure is needed: calculate `d` such that `ed=1 mod φ`, then for each encrypted message, `c`, calculate m=c<sup>d</sup> mod n.
There exist values of `e` and `m` such that m<sup>e</sup> mod n = m.
We call messages `m` for which m<sup>e</sup> mod n=m unconcealed messages.
An issue when choosing `e` is that there should not be too many unconcealed messages.
For instance, let `p=19` and `q=37`.
Then `n=19*37=703` and `φ=18*36=648`.
If we choose `e=181`, then, although `gcd(181,648)=1` it turns out that all possible messages
m `(0≤m≤n-1)` are unconcealed when calculating m<sup>e</sup> mod n.
For any valid choice of `e` there exist some unconcealed messages.
It's important that the number of unconcealed messages is at a minimum.
For any given `p` and `q`, find the sum of all values of `e`, `1 < e < φ(p,q)` and `gcd(e,φ)=1`, so that the number of unconcealed messages for this value of `e` is at a minimum.
# --hints--
`euler182()` should return 399788195976.
`RSAEncryption` should be a function.
```js
assert.strictEqual(euler182(), 399788195976);
assert(typeof RSAEncryption === 'function')
```
`RSAEncryption` should return a number.
```js
assert.strictEqual(typeof RSAEncryption(19, 37), 'number');
```
`RSAEncryption(19, 37)` should return `17766`.
```js
assert.strictEqual(RSAEncryption(19, 37), 17766);
```
`RSAEncryption(283, 409)` should return `466196580`.
```js
assert.strictEqual(RSAEncryption(283, 409), 466196580);
```
`RSAEncryption(1009, 3643)` should return `399788195976`.
```js
assert.strictEqual(RSAEncryption(19, 37), 17766);
```
# --seed--
@ -27,16 +70,44 @@ assert.strictEqual(euler182(), 399788195976);
## --seed-contents--
```js
function euler182() {
function RSAEncryption(p, q) {
return true;
}
euler182();
RSAEncryption(19, 37);
```
# --solutions--
```js
// solution required
function gcd(a, b) {
if (b)
return gcd(b, a % b);
else
return a;
}
function RSAEncryption(p, q) {
let phi = (p - 1) * (q - 1);
let best = Number.MAX_SAFE_INTEGER;
let sum = 0;
for (let e = 0; e < phi; ++e) {
if (!(gcd(e, phi) == 1))
continue;
let msg = (gcd(p - 1, e - 1) + 1) * (gcd(q - 1, e - 1) + 1);
if (best == msg) {
sum += e;
} else if (best > msg) {
best = msg;
sum = e;
}
}
return sum;
}
```