fix(learn): Rework Euler Problem 182 (#41337)
* Rework Euler Problem 182 * Reordered tests * Fixes for formatting
This commit is contained in:
@ -10,16 +10,59 @@ dashedName: problem-182-rsa-encryption
|
||||
|
||||
The RSA encryption is based on the following procedure:
|
||||
|
||||
Generate two distinct primes p and q.Compute n=pq and φ=(p-1)(q-1).
|
||||
Generate two distinct primes `p` and `q`.
|
||||
Compute `n=p*q` and `φ=(p-1)(q-1)`.
|
||||
Find an integer `e`, `1 < e < φ`, such that `gcd(e,φ) = 1`
|
||||
|
||||
Find an integer e, 1<e<φ, such='' that='' gcd(e,φ)='1.' a='' message='' in='' this='' system='' is='' number='' the='' interval='' \[0,n-1].='' text='' to='' be='' encrypted='' then='' somehow='' converted='' messages='' (numbers='' \[0,n-1]).='' encrypt='' text,='' for='' each='' message,='' m,='' c='me' mod='' n='' calculated.='' decrypt='' following='' procedure='' needed:='' calculate='' d='' ed='1' φ,='' c,='' m='cd' n.='' there='' exist='' values='' of='' e='' and='' me='' call='' which='' unconcealed='' messages.='' an='' issue='' when='' choosing='' should='' not='' too='' many='' instance,='' let='' p='19' q='37.' φ='18\*36=648.' if='' we='' choose='' then,='' although='' gcd(181,648)='1' it='' turns='' out='' all='' possible='' messagesm='' (0≤m≤n-1)='' are='' calculating='' any='' valid='' choice='' some='' it's='' important='' at='' minimum.='' find='' sum='' e,='' 1<e<φ(1009,3643)='' so='' value='' <='' section=''></e<φ,>
|
||||
A message in this system is a number in the interval `[0,n-1]`.
|
||||
A text to be encrypted is then somehow converted to messages (numbers in the interval `[0,n-1]`).
|
||||
To encrypt the text, for each message, `m`, c=m<sup>e</sup> mod n is calculated.
|
||||
|
||||
To decrypt the text, the following procedure is needed: calculate `d` such that `ed=1 mod φ`, then for each encrypted message, `c`, calculate m=c<sup>d</sup> mod n.
|
||||
|
||||
There exist values of `e` and `m` such that m<sup>e</sup> mod n = m.
|
||||
We call messages `m` for which m<sup>e</sup> mod n=m unconcealed messages.
|
||||
|
||||
An issue when choosing `e` is that there should not be too many unconcealed messages.
|
||||
For instance, let `p=19` and `q=37`.
|
||||
Then `n=19*37=703` and `φ=18*36=648`.
|
||||
If we choose `e=181`, then, although `gcd(181,648)=1` it turns out that all possible messages
|
||||
m `(0≤m≤n-1)` are unconcealed when calculating m<sup>e</sup> mod n.
|
||||
For any valid choice of `e` there exist some unconcealed messages.
|
||||
It's important that the number of unconcealed messages is at a minimum.
|
||||
|
||||
For any given `p` and `q`, find the sum of all values of `e`, `1 < e < φ(p,q)` and `gcd(e,φ)=1`, so that the number of unconcealed messages for this value of `e` is at a minimum.
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler182()` should return 399788195976.
|
||||
`RSAEncryption` should be a function.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler182(), 399788195976);
|
||||
assert(typeof RSAEncryption === 'function')
|
||||
```
|
||||
|
||||
`RSAEncryption` should return a number.
|
||||
|
||||
```js
|
||||
assert.strictEqual(typeof RSAEncryption(19, 37), 'number');
|
||||
```
|
||||
|
||||
`RSAEncryption(19, 37)` should return `17766`.
|
||||
|
||||
```js
|
||||
assert.strictEqual(RSAEncryption(19, 37), 17766);
|
||||
```
|
||||
|
||||
`RSAEncryption(283, 409)` should return `466196580`.
|
||||
|
||||
```js
|
||||
assert.strictEqual(RSAEncryption(283, 409), 466196580);
|
||||
```
|
||||
|
||||
`RSAEncryption(1009, 3643)` should return `399788195976`.
|
||||
|
||||
```js
|
||||
assert.strictEqual(RSAEncryption(19, 37), 17766);
|
||||
```
|
||||
|
||||
# --seed--
|
||||
@ -27,16 +70,44 @@ assert.strictEqual(euler182(), 399788195976);
|
||||
## --seed-contents--
|
||||
|
||||
```js
|
||||
function euler182() {
|
||||
function RSAEncryption(p, q) {
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
euler182();
|
||||
RSAEncryption(19, 37);
|
||||
```
|
||||
|
||||
# --solutions--
|
||||
|
||||
```js
|
||||
// solution required
|
||||
function gcd(a, b) {
|
||||
if (b)
|
||||
return gcd(b, a % b);
|
||||
else
|
||||
return a;
|
||||
}
|
||||
|
||||
function RSAEncryption(p, q) {
|
||||
let phi = (p - 1) * (q - 1);
|
||||
|
||||
let best = Number.MAX_SAFE_INTEGER;
|
||||
let sum = 0;
|
||||
|
||||
for (let e = 0; e < phi; ++e) {
|
||||
if (!(gcd(e, phi) == 1))
|
||||
continue;
|
||||
|
||||
let msg = (gcd(p - 1, e - 1) + 1) * (gcd(q - 1, e - 1) + 1);
|
||||
|
||||
if (best == msg) {
|
||||
sum += e;
|
||||
} else if (best > msg) {
|
||||
best = msg;
|
||||
sum = e;
|
||||
}
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
```
|
||||
|
Reference in New Issue
Block a user